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ABSTRACT 

The article describes an approach to the systematic use of nonlinear data filtering methods in tasks of intelligent data analysis 

and machine learning. The concepts of filtering and non-linear filtering are considered. The analysis of modern methods of optimal 

and probabilistic nonlinear filtering of statistical data and the peculiarities of their application in solving the problems of estimating 

the states of dynamic systems is carried out. The application of the Kalman filter and its variants for solving nonlinear filtering 

problems is analysed. The classification of nonlinear filtering methods is given. In the basis of the classification are digital, optimal 

and probabilistic filters. Non-recursive and recursive digital filters are studied. The formulation of the problem of optimal filtering 

based on the Kalman filter is considered. The filtering equation for a free dynamic system based on the state space model of a 

discrete system is given. The extended Kalman filter and its modifications are considered. The Bayesian method of estimating the 

state of a nonlinear stochastic system is presented. The problem of linear and nonlinear probabilistic filtering is considered. Three 

filters are considered as examples of probabilistic filters: an unscented Kalman filter, a point mass filter, and a granular filter. The 

granular filtering algorithm and its modifications are considered in detail. The architecture of the information-analytical system for 

solving forecasting problems has been developed. The system consists of the following main components: user interface, information 

storage subsystem, data analysis and pre-processing subsystem, modelling subsystem, forecast construction and evaluation 

subsystem, visualization subsystem. As an example of forecasting based on the systematic use of non-linear filtering methods, the 

task of forecasting the prices of Google shares is considered. A comparison of the quality assessment results of basic models and 

forecast values without filtering and with different options for applying filters was carried out. To improve the quality of forecasting 

based on prepared data and based on nonlinear filtering methods, a method based on combined forecasts was used to solve the 

forecasting problem. The results of forecasting using the combined model are presented. 

Keywords. Nonlinear filtering; optimal Kalman filter; extended Kalman filter; probabilistic filter; granular filtering algorithm; 
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INTRODUCTION 

In today's data-driven world, huge amounts of 

information are processed every day. To analyze all 

this data, companies need to apply data mining 

information technologies and techniques to analyze 

and identify specific subsets of information to make 

informed decisions. Data mining is the process of 

discovering patterns in data by cleaning raw data, 

building models, and testing those models. With the 

help of methods of intelligent data analysis, large 

volumes of information are studied, and new 

information is generated, revealing regularities, 

correlations and anomalies of the collected data.  

© Gozhyj A., Kalinina I., Bidyuk P., 2023 

Data mining uses techniques at the intersection 

of statistics, database management, and machine

learning. In other words, data mining includes 

different groups of techniques, from collection to 

visualization and extraction of information from 

data. One of these groups of intelligent data analysis 

methods is filtering. 

Data filtering is the process of processing large 

amounts of data to identify specific subsets of 

information based on defined criteria. This process 

allows you to focus on specific data and exclude 

others that are not relevant to the process being 

investigated. Data filtering is an important 

component of the process of preprocessing a set of 

real data, which is used to solve problems of 

intelligent data analysis and machine learning  

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/deed.uk) 

http://aait.od.ua/index.php/journal/theme1
https://doi.org/
mailto:alex.gozhyj@gmail.com
https://orcid.org/0000-0001-8359-2045
mailto:irina.kalinina1612@gmail.com
https://orcid.org/0000−0002−7421−3565
mailto:pbidyke@gmail.com
https://doi.org/10.15276/aait.06.2023.23


Gozhyj A. P., Kalinina I. A., Bidyuk P. I.   /   Applied Aspects of Information Technology                              

                                                                                       2023; Vol.6 No.4: 345–361 

346 Systems analysis, applied information

systems and technologies

ISSN 2617-4316 (Print) 

    ISSN 2663-7723 (Online) 
 

(classification, clustering, regression, etc.). The main 

goal of the filtering stage is to select a useful part of 

the data spectrum for further processing and 

modeling and to retain the noisy or simply 

unnecessary part of the data set for analysis. It helps 

you understand relevant data and then use that 

information to access possible outcomes. Data 

filtering is also necessary for data visualization. Data 

visualization tools allow you to quickly analyze data 

and make informed decisions based on the 

information obtained. When the data is filtered, it's 

easier to create charts and graphs that provide 

meaningful statistics. A wide variety of filtering 

methods are available in data mining. Filtering 

methods are based on machine learning methods, 

statistical models and deep learning algorithms. 

Non-linear filtering methods are of greatest 

interest. The main task of linear and non-linear 

filtering is the formation/calculation of statistical or 

probabilistic inferences regarding the state of the 

system based on the available measurements. Within 

the Bayesian approach to data analysis, this is done 

by calculating or approximating the posterior 

distribution of the state vector, provided that all 

measurements and estimates of unmeasured 

components available at the time of calculation are 

used. Since the probability distribution function of 

measurements contains practically all available 

statistical information about the object under study, 

its evaluation is a fairly complete solution to the 

problem of assessing the condition and forecasting 

its development. The purpose of the paper is to study 

the systematic use of nonlinear filtering methods in 

machine learning problems. 

ANALYSIS OF LITERARY DATA 

The initial applications of filtering were used to 

solve technical problems. After the fundamental 

works on linear filtering by Kalman [1] and Kalman 

and Bucy [2], the theory of filtering was applied to 

solve the problems of determining satellite orbits 

and to solve various problems of navigation, as well 

as for the problems of controlling spacecraft [3]. 

Currently, the application of nonlinear filtering 

methods varies from engineering problems, machine 

learning problems [4], as well as various problems in 

economic sciences, finance, medicine, and natural 

sciences [5, 7], [8, 9], [10]. 

Modern methods of optimal and probabilistic 

nonlinear filtering of statistical (experimental) data 

and features of their application are used in solving 

the problem of assessing the states of dynamic 

systems, in particular, the tracking of moving objects 

[3]. Papers [6,7], [8,9], [10,11] consider the 

modeling and estimation of the trajectory of a 

moving object based on modern filtering methods, 

as well as the use of a filtering algorithm of the 

“granular filter” type, which is increasingly widely 

used in solving the problems of estimating and 

predicting the states of dynamic systems.  

Using different filtering methods, analysts offer 

different approaches to data processing in order to 

better understand how to process and analyze a large 

volume of data and draw conclusions based on the 

results. Therefore, the application of filtering in the 

tasks of intelligent data analysis and machine 

learning requires the systematic use of various 

filtering methods. 

For models of nonlinear systems, nonlinear 

filtering methods are most often used to increase the 

accuracy of estimation. The most widely used 

nonlinear filter in solving practical engineering 

problems is the extended Kalman filter (EKF) due to 

its simple algorithm and small amount of calculation 

[12]. The extended Kalman filter uses Taylor series 

expansion to approximate the model of a nonlinear 

system. When the nonlinearity is complex, the 

filtering accuracy will be reduced or even divergent 

due to the high-order truncation error [13]. 

Therefore, to increase the accuracy in this work, it is 

suggested to use the extended Kalman filter of the 

second order and the extended Kalman filter of the 

higher order consistently, but at the same time, the 

computational complexity of the filtering procedure 

is significantly increased.  

In [14], the iterated extended Kalman filter 

(IEKF) is presented, which is obtained by dividing 

the one-stage EKF update into several time steps and 

gradually updating the states according to the 

nonlinear gradient of the measurement function.  

In [14], numerical integration approximation 

methods were applied to nonlinear filtering. The 

Gaussian Hermite filter (GHF), the unscented 

Kalman filter (UKF) and the cubature Kalman filter 

(CKF) were successively proposed. Gaussian  

Hermite filter is a polynomial integral 

approximation filtering algorithm for nonlinear 

system models [15] that uses Gauss-Hermite 

polynomials to approximate the probability density 

in Gaussian filtering. Unscented Kalman filter takes 
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the UT criterion to select deterministic sigma sample 

points in the initial set of state distribution points, 

introduces the sample points into a nonlinear system, 

and obtains the mean and covariance of the posterior 

probability density function through the point set 

transformation [16, 17]. Unscented Kalman filter has 

less computation and better approximation 

performance than EKF. The CKF is based on the 

spherical-radial criterion and uses a group of 

cubature points with the same weight to calculate the 

mean and covariance of the state variables [18]. In 

works [19, 20], a comparative analysis of UKF and 

CKF is carried out for low- and high-dimensional 

models in nonlinear conditions. The simulation 

results show that the CKF has optimal numerical 

stability and filtering accuracy under high 

dimensional conditions. A granular (particle) filter 

(PF) is not limited by the linearization error or 

Gaussian noise assumption and approximates a 

probability density function corresponding to a non-

linear function. However, it has a significant volume 

of calculations for a system that solves the problem 

of data processing in real time [21]. This 

phenomenon is often found in applied filtering 

systems with high accuracy [22]. Due to the non-

linear distribution of the measurement domain, the 

existing non-linear filters have specific problems in 

terms of state estimation accuracy and filter 

consistency, and even filter divergence may occur in 

EKF [23]. The given examples demonstrate an 

increase in the accuracy of the system state 

assessment and the efficiency of filtering with the 

systematic use of nonlinear filtering methods.  

FEATURES OF NONLINEAR DATA 

FILTERING METHODS 

The article examines effectiveness of the 

systematic use of nonlinear filters during data 

preprocessing in machine learning tasks. 

The article solves the following problems: 

research of modern methods of nonlinear filtering: 

digital, optimal and probabilistic; research on the 

systematic application of nonlinear filtering methods 

in machine learning problems; development of the 

architecture of an information-analytical system for 

solving forecasting problems; research of granular 

filtering algorithms; study of the effectiveness of the 

systematic use of nonlinear filtering methods in 

solving applied machine learning problems.  

FEATURES OF BUILDING 

STRUCTURAL MODELS OF TIME SERIES 

Data filtering is an important component of the 

process of preprocessing a set of real data, which is 

used in intelligent data analysis and in solving 

machine learning problems. The main purpose of 

using filtering methods is to select the necessary part 

of the data for further processing when solving 

applied problems. In modern data preprocessing 

procedures, the following types of filters are most 

common: digital, optimal, and probabilistic filters. 

The classification of filter types is presented in 

Fig. 1. 

Fig. 1. Classification of filters 
             Source: compiled by the authors 

Digital filtering. Digital filters (DF) are divided 

into two classes: non-recursive and recursive filters. 

Mathematically, the operation of a non-recursive 

filter can be represented, for example, by an 

autoregressive equation of the AR (р) type [21]: 

𝑦(𝑘) = 𝑎0𝑥(𝑘) + 𝑎1𝑥(𝑘 − 1)+. . . +𝑎𝑝𝑥(𝑘 − 𝑝), 

where 𝑦(𝑘) is the observation value after filtering; 

𝑥(𝑘), 𝑥(𝑘 − 1), … , 𝑥(𝑘 − 𝑝) is preliminary 

observation data; 𝑎0, 𝑎1, … , 𝑎𝑝 are parameters 

(coefficients) that determine the amplitude-

frequency response (AFR) of the filter. Next, the 

presented expression represents the convolution of 

the input signal with a certain set of filter 

coefficients. 

Non-recursive filters have advantages compared 

to recursive ones: they are always stable and allow 

obtaining arbitrary frequency response. However, 

they require more resources and have long delays. 

Mathematically, the operation of the recursive 

filter is described by the formula: 

𝑦(𝑘) = 𝑎0𝑥(𝑘) + 𝑎1𝑥(𝑘 − 1) + ⋯ + 𝑎𝑝𝑥(𝑘 − 𝑝) − 

−𝑏1𝑦(𝑘 − 1) − 𝑏2𝑦(𝑘 − 2) − ⋯ − 𝑏𝑞𝑦(𝑘 − 𝑞). 
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Recursive filters have the following advantages: 

they are faster and simpler compared to non-

recursive filters, and they also have analogy 

prototypes. Their disadvantages include the fact that 

their frequency response must be selected from real 

prototype filters, and they are not always stable. 

Today, there are highly developed methods of 

optimization design of DF [24, 25], which allow 

designing effective filter structures with frequency 

characteristics of a predetermined shape. Many 

applied modelling systems have a toolkit for DF 

design, which consists of a set of appropriate 

functions, which greatly facilitates the calculation 

process. 

Optimal filtering. The task of refining estimates 

of the process state under influence of random 

external disturbances and measurement noise 

(errors) is successfully solved using optimal filtering 

methods, in particular, the Kalman filtering (KF) 

algorithm. To date, there are several modifications 

of the filtering approach that provide the possibility 

of optimal data smoothing, calculation of short-term 

forecasts of states using optimal estimates, as well as 

estimation of immeasurable components of the state 

vector and some parameters of the mathematical 

model. 

The main filtering equation for a free dynamic 

system (control actions are not taken into account) is 

based on the state space model of a discrete system 

and can be written as follows [1, 26]: 

�̂�(𝑘) = 𝐀�̂�(𝑘 − 1) + 𝐊(𝑘)[𝐳(𝑘) − 𝐇𝐀�̂�(𝑘 − 1)], 

where �̂�(𝑘) is optimal estimate of the state vector 

𝐱(𝑘) at time k; 𝐀 is matrix of state transitions (or 

matrix of system dynamics); 𝐳(𝑘) is vector of initial 

system measurements; 𝐇 is matrix of measurement 

coefficients; 𝐊(𝑘) is optimal matrix of weighting 

coefficients, which is calculated as a result of the 

minimization of the functional: 

𝐽 = min
𝐊

𝐸{[�̂�(𝑘) − 𝒙(𝑘)]𝑇[�̂�(𝑘) − 𝒙(𝑘)]}. 

The expression means minimization of the 

mathematical expectation of the squared errors of 

the state estimation. The value of 𝐊 is determined by 

solving the corresponding Riccati equation.  

The state estimation algorithm provides 

(automatically) the ability to estimate the state 

prediction one step ahead according to the equation: 

�̂�(𝑘 + 1|𝑘) = 𝐀�̂�(𝑘|𝑘). 

This equation can be used to calculate multistep 

forecasts as follows:  

�̂�(𝑘 + 𝑠|𝑘) = 𝐀𝑠�̂�(𝑘|𝑘), 

where s is number of forecast steps. 

Next, the Kalman filter performs the task of 

smoothing and forecasting taking into account 

statistical uncertainties such as covariance and 

mathematical expectation for two stochastic 

processes: external state perturbations and 

measurement errors. Therefore, the use of the filter 

expands the data processing system due to additional 

functionality aimed at combating statistical 

uncertainties. In addition, the adaptive version of the 

filter provides the possibility of real-time estimation 

of the statistical characteristics of two random 

processes. Indicators that cannot always be 

evaluated a priori lead to the need to build adaptive 

evaluation schemes. 

The extended Kalman filter (EKF) is used to 

estimate the state of nonlinear non-Gaussian 

processes. This is a kind of linear Kalman filter, but 

it is applied to a linearized model of the system 

under study with Gaussian noise and the same 

moments of the first and second order. The extended 

KF approximates a non-linear function (the model of 

the system generating the data being processed) 

using a second-order Taylor expansion. However, 

the disadvantage of the approach is the replacement 

of the actual probability distribution of the data with 

a normal one, which leads to the use of the given 

model of system dynamics, and this may turn out to 

be unsuitable for further use [5, 10], [26]. 

Modified Extended Kalman Filter (MEKF). A 

more complex type of nonlinearity of the model, 

which is represented by the dependence of state 

variables 𝐗(𝑡)  with continuous time on possible 

discrete variables, 𝐃(𝑘), 𝑘 = 0,1,2, … , which may 

have non-stationary probability distributions 

different from the distribution of continuous 

variables. Such situations require specific statements 

for all possible hypotheses related to possible values 

of discrete variables. The number of hypotheses can 

grow exponentially with the length of the discrete 

data sample, which can ultimately lead to high 

computational costs and generally unacceptable 

execution time of the filter implementation. To 

handle the following cases, another modification of 

the filter has been proposed, which involves the use 

of a random variable  𝐇(𝑘) , each value 

corresponding to one of the possible hypotheses. 

The distribution 𝐇(𝑘), corresponds to the probability 

of the chosen hypothesis. In the MEKF 

implementation process, all combinations of values 
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𝐇(𝑘), and 𝐃(𝑘 + 1)are taken into account, which 

makes it possible to analyse 𝐊 × |𝐃|  component. 

Each new hypothesis is normalized on the incoming 

measurements, 𝐘(𝑘 + 1) , and due to Bayesian 

conditioning, the mixture weights are adjusted, as 

well as the parameters of the multivariate Gaussians. 

The result of this procedure is an adequate model 

and, as a result, a higher quality of the final result -

the quality of the state assessment, forecast and 

alternative decisions based on it. 

The general form of the Bayesian state 

estimation method. The dynamics of a nonlinear 

stochastic system can be described by discrete state 

space equations as follows [26]: 

𝒙(𝑘) = 𝒇[𝒙(𝑘 − 1), 𝒘(𝑘 − 1)],    (1) 

𝒛(𝑘) = 𝒉[𝒙(𝑘), 𝒗(𝑘)],   (2) 

where (1) is the equation of state; (2) is 

measurement equation; 𝐱(𝑘)  is vector of variable 

states with a non-Gaussian distribution 𝑃𝑥(𝑘); 𝑧(𝑘) is 

vector of real measurements (measurements can be 

complex numbers, but converted to real values);

𝒘(𝑘) is vector of random external disturbances with 

a known probability distribution 𝑃𝑤(𝑘) ; 𝒗(𝑘)  is 

measurement noise vector (or measurement errors) 

with a known probability distribution 𝑃𝑣(𝑘); 𝒇, 𝒉 are 

non-linear deterministic functions; 𝑘 = 0,1,2,3, … is 

discrete time.  

Random disturbances in equations (1) and (2) 

are usually considered in an additive form, which 

facilitates estimation of model parameters, but 

makes it possible to build a model with a high 

degree of adequacy. If necessary, model (1), (2) can 

be extended by a vector of deterministic control 

influences 𝐮(𝑘) . The first measurement of 𝒛(1)
makes it possible to estimate the state of 𝐱(1),  and 

in the future, new measurements will lead to the 

estimation of future states.  

We introduce the following notations for the 

sequence of state vectors: 

𝐱(1: 𝑘) = {𝒙(1), 𝒙(2), … , 𝒙(𝑘) },  

they will be used later. 

In terms of conditional probability distributions, 

model (1), (2) can be written as follows [26]: 

𝒙(𝑘)~𝑃[𝒙(𝑘)|𝒙(𝑘 − 1)], 
𝒛(𝑘)~𝑃[𝒛(𝑘)|𝒛(𝑘 − 1)]. 

The problem of state estimation from the point 

of view of the Bayesian approach to data processing 

consists in the generation (estimation) of the 

posterior probability distribution 𝑃[𝒙(𝑘)|𝒛(1: 𝑘)]
based on the sequence of measurements 𝒛(1: 𝑘) =
{𝒛(1), 𝒛(2), . . . , 𝒛(𝑘)}.  

Equation (1) is the predicted conditional 

transition distribution 

𝑃[𝒙(𝑘)|𝒙(𝑘 − 1), 𝒛(1: 𝑘 − 1)], 

which is based on the states for previous moments 

and all available measurements, starting from the 

first and to 𝒛(1: 𝑘 − 1).  

Equation (2) defines the likelihood function for 

a current measurement with known current state, 

𝑃[𝒛(𝑘)|𝒙(1: 𝑘)].  
The a priori probability of this state can be 

determined as follows: 

𝑃[𝒙(𝑘)|𝒛(1: 𝑘 − 1)], 

 and it can be calculated using the Bayes theorem 

according to the expression [26]: 

𝑃[𝒙(𝑘)|𝒛(1: 𝑘 − 1)] = 

= ∫ 𝑃 [𝒙(𝑘)|𝒙(𝑘 − 1), 𝒛(1: 𝑘 − 1)]𝑃[𝒙(𝑘 −
−1)|𝒛(1: 𝑘 − 1)]𝑑𝒙(𝑘 − 1). 

(3) 

The observation equation (2) defines the 

likelihood function for a current measurement with a 

known current state, 𝑃[𝒛(𝑘)|𝒙(1: 𝑘)].  
On the other hand, the probability density 

function of the state of the previous time interval can 

be defined as follows: 

𝑃[𝒙(𝑘 − 1)|𝒛(1: 𝑘 − 1)]. 

At the stage of correction, state estimates are 

calculated using distribution function of the 

following type: 

𝑃[𝒙(𝑘)|𝒛(1: 𝑘 − 1)] = 𝑐𝑃[𝒛(𝑘)|𝒙(1: 𝑘 −
−1)] ⥂ 𝑃[𝒙(𝑘)|𝒛(1: 𝑘 − 1)],  

(4) 

where 𝑐 is normalizing constant. 

The filtering problem consists in the recursive 

estimation of the first two moments of the state 

vector 𝒙(𝑘) with known dimensions, 𝒛(1: 𝑘). 
For some general type of distribution 𝑃(𝒙), the 

problem is to estimate the mathematical expectation 

for any (actual) function 𝒙(𝑘), such as ⟨𝑔(𝒙)⟩𝑝(𝑥) , 

using equations (3) and (4) and calculating an 

integral of the type: 

⟨𝑔(𝒙)⟩𝑝(𝑥) = ∫ 𝑔(𝒙)𝑃(𝒙)𝑑𝒙.   (5) 

But the integral cannot be taken in a closed 

form for the general type of multidimensional 
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distributions; its value should be approximated using 

known numerical procedures [26]. 

Equations (1) and (2) are often considered with 

additive random Gaussian components in the 

following form: 

𝒙(𝑘) = 𝒇[𝒙(𝑘 − 1)] + 𝒘(𝑘 − 1),  (6) 

𝒛(𝑘) = 𝒉[𝒙(𝑘)] + 𝒗(𝑘),   (7) 

where 𝒘(𝑘) and 𝒗(𝑘) are random vector Gaussian 

processes, which are represented in the simulation 

model by vector variables with zero mean and 

covariance matrices 𝑸(𝑘) and 𝑹(𝑘), respectively.  

The initial state 𝒙(0)  is also modelled by 

random values, �̂�0, which are independent of both 

noise processes and have a covariance matrix 𝐏0
𝐱𝐱. 

Assume that the nonlinear deterministic 

functions 𝒇, 𝒉 and the covariance matrices 𝑸 and 𝑹
are stationary, that is, their parameters do not depend 

on time. Then 

𝑃[𝒙(𝑘)|𝒙(𝑘 − 1)|𝒛(1: 𝑘 − 1)] =
𝛮(𝒙(𝑘); 𝒇(𝒙(𝑘 − 1)), 𝑸), 

(8) 

where 𝜨(𝒕; 𝝉, 𝛴)  is multidimensional Gaussian 

distribution, which is generally defined by the 

expression [26]: 

𝑃𝛮(𝑡, 𝜏, 𝛴) =
1

√(2𝜋)𝑘‖𝛴‖
𝑒𝑥𝑝 {−

1

2
[𝑡 −

−𝜏]𝑇(𝛴)−1[𝑡 − 𝜏]}. 
(9) 

Now equation (3), which determines the a priori 

probability of states, can be written in the form: 

𝑃[𝒙(𝑘)|𝒛(1: 𝑘 − 1)] = 

= ∫ 𝛮 [𝒙(𝑘); 𝒇(𝒙(𝑘 − 1)), 𝑸]𝑃[𝒙(𝑘 −
−1)|𝒛(1: 𝑘 − 1)]𝑑𝒙(𝑘 − 1). 

(10) 

The expected value of 𝒕  for the Gaussian 

distribution 𝛮(𝒕; 𝐟(𝜏), 𝛴), can be represented by the 

expression [26]: 

⟨𝒕⟩ = ∫ 𝒕 𝛮(𝒕; 𝒇(𝝉), 𝜮)𝒅𝒕 = 𝒇(𝝉).           (11) 

It is known that the Kalman filter can be 

applied to any dynamic system represented in the 

form of a state space with additive Gaussian noises 

in both equations, regardless of the presence of 

nonlinearities. Although there may be a problem of 

convergence with nonlinearity.  

This approach allows us to construct a Gaussian 

approximation to the posterior distribution 

𝑃(𝒙(𝑘|𝑘)), with mean and covariance given by the

expressions given below: 

𝑃�̂�(𝑘|𝑘) = �̂�(𝑘|𝑘 − 1) + 𝑲(𝑘)[𝒛(𝑘) −
�̂�(𝑘|𝑘 − 1)], 

(12) 

𝑷𝒙𝒙(𝑘|𝑘) = 𝑷𝒙𝒙(𝑘|𝑘 − 1) − 𝑲(𝑘)𝑷𝒛𝒛𝑲𝑇(𝑘), (13)  

where the optimal filter coefficient is calculated 

using the expression: 

𝑲(𝑘) = 𝑷𝒙𝒛(𝑘|𝑘 − 1)[𝑷𝒛𝒛(𝑘|𝑘 − 1)]−1 .   (14) 

The only approximation used in the above 

expressions is that of noise modelling using additive 

Gaussian sequences. Calculation of estimates of the 

state vector  �̂�(𝑘|𝑘) , and covariance, 𝑷𝒙𝒙(𝑘|𝑘) , is 

performed without approximation.  

However, the practical implementation of the 

considered filter requires procedures for calculating 

integrals in equations that have the following form: 

𝐼 = ∫ 𝒈(𝒙)𝛮(𝒙; �̂�, 𝑷𝒙𝒙)𝑑𝒙.              (15) 

Here, 𝛮(𝒙; �̂�, 𝑷𝒙𝒙)  is a multidimensional 

Gaussian distribution with a vector of means �̂�  and 

a covariance matrix 𝑷𝒙𝒙 . There are three 

approximations for calculating the integral (15), 

considered in [27]. One of them can be chosen for a 

specific practical implementation. 

Probabilistic filtering. The problem of linear 

and nonlinear probabilistic filtering is to compute a 

probabilistic inference about the state of the system 

using available measurements. In Bayesian data 

analysis, this is done by approximating the posterior 

distribution of the state vector using all available 

measurement information and estimates of the 

unmeasured components. Since the probability 

distribution function contains all the available 

information about the studied states of the system 

(processes), its assessment is a complete solution to 

the problem of assessing the state and forecasting its 

future development [26]. 

As examples of probabilistic filters, Figure 1 

shows three filters: an unscented Kalman filter, a 

point mass filter, and a granular filter.  

The implementation of the unscented Kalman 

filter (U-filter or UKF) is based on the principle that 

a set of discrete measurements can be used to 

estimate the mean of the data. The initial data 

distribution can be transformed into any other 

required to solve a particular problem statement by 

applying a nonlinear transformation to each 

dimension. The mean and covariance of the new 

distribution are the sought estimates needed by the 

filtering algorithm. Unlike the EKF, in which a 

nonlinear function (model) is approximated by a 
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linear one, the main advantage of this approach is 

the use of an available nonlinear function 

representing the data model. This means that there is 

no need to apply a linearization procedure based on 

the differentiation of a nonlinear function. This 

improves the quality of the estimates at the filter 

output, and also simplifies the filter implementation 

procedure due to the fact that the construction and 

implementation of the corresponding Jacobi matrix 

is excluded. Such a state estimation algorithm 

generates output data equivalent in quality to the 

optimal Kalman filter results for linear systems. But 

the advantage of this approach is that the filter is 

applied to nonlinear systems without applying the 

linearization procedure necessary to implement the 

EKF. It is analytically shown that the quality of 

filtering in this case exceeds the quality of the EKF 

and can be compared with the quality of the 

Gaussian filter of the second order [28, 29]. 

When applying a point mass filter (PMF), a 

network of points is superimposed on the state 

space, which is used to recursively estimate the 

posterior distribution of states. This filtering 

procedure is suitable for handling any nonlinear and 

non-Gaussian processes and can represent almost 

any posterior probability distribution with high 

accuracy. The main disadvantage of PMF is the high 

dimensionality of the distribution network in the 

case of a high order of the state space. This filtering 

procedure is used in “non-standard” cases of 

multidimensional distributions that require high-

quality data processing results. 

One of the types of probabilistic Bayesian 

filters is called particle filter (PF) (granular 

filtering). The task to be solved by the filter is the 

construction (approximation) of the posterior 

probability density for the unknown states taking 

into account the necessary measurements, i.e. the 

estimate of 𝑃[𝑥(𝑘)|𝑥(1: 𝑘)]. There are alternative 

particle filtering algorithms based on pseudorandom 

sequences generated by Monte Carlo methods to 

estimate desired multivariate distributions [30]. 

An example of the implementation of a 

recursive Bayesian filter. The implementation 

method of the recursive Bayesian filter using Monte 

Carlo pseudo-random sequence generation is 

performed using the Sequential Importance 

Sampling (SIS) algorithm. It is the basic algorithm 

of particle filtering (granular filtering). The idea of 

filtering is to represent the desired posterior 

probability density as a sequence of random values 

with appropriate weights, which is used to compute 

the filtered estimates. With a significant increase in 

the number of elements of the sequence, the 

characteristic of the result of the Monte Carlo 

program becomes equivalent to the functional 

description for the posterior density, and the SIS 

filter approaches the optimal Bayesian estimate. 

Let {𝑥𝑖(1: 𝑘), 𝑤𝑖(𝑘)}
𝑖=1

𝑁𝑆
 be a random measure 

of the posterior density, 𝑃[𝑥(1: 𝑘), 𝑧(1: 𝑘)], where 

{𝑥𝑖(1: 𝑘), 𝑖 = 0,1, … , 𝑁𝑆 } is a set of k steps of the 

evolution trajectory for reference points (particles) 

with individual normalized weight coefficients, 

{𝑤𝑖(𝑘), 𝑖 = 0,1, … , 𝑁𝑆}, ∑ 𝑤𝑖(𝑘) = 1
𝑁𝑆
𝑖=1 . Where 𝑁𝑆 

is the number of particles that will be used to 

estimate the state.  

The posterior density at time k can be 

represented as follows: 

𝑃[𝑥(1: 𝑘)|𝑧(1: 𝑘)]

≈ ∑ 𝑤𝑖(𝑘)𝛿 (𝑥(1: 𝑘)

𝑁𝑆

1

− 𝑥𝑖(1: 𝑘)) , 

(16) 

where 𝛿(𝑥)  is Dirac's 𝛿 – function, i.e. 

𝑃[𝑥𝑖(1: 𝑘)|𝑧(1: 𝑘)] ≈ 𝑤𝑖(𝑘).  

Weighting factors are generated according to 

the principle of importance sampling. The procedure 

can be characterized as follows. Suppose it is desired 

to generate a probability distribution, 𝑃(𝑥) ∝ 𝜋(𝑥)

(the symbol “ ∝”  stands for proportion), where 

{𝑥(∙)} is a desired random process that cannot be 

generated from its true distribution, but for which 

the approximation 𝜋(𝑥) can be calculated.  

Let 𝑥𝑖~𝑃(𝑥) , 𝑖 = 0, … , 𝑁𝑆  be realizations of 

random variables that can be easily generated from 

the 𝑄(∙), distribution, called the proposal density or 

the importance density.  

Then the weighted approximation of the desired 

distribution 𝑃(∙) looks like this: 

𝑃(𝑥) ≈ ∑ 𝑤𝑖(𝑘)𝛿(𝑥 − 𝑥𝑖),

𝑁𝑆

𝑖=1

where 

𝑤𝑖 ∝
𝜋(𝑥𝑖)

𝑄(𝑥𝑖)
, (17) 

is the normalized weighting factor for the i-th 

particle.  
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After calculating the ratio, the coefficients are 

normalized to satisfy the condition: ∑ 𝑤𝑖(𝑘) = 1
𝑁𝑆
𝑖=1 . 

If the realizations of the processes {𝑥𝑖(1: 𝑘)}

were generated from the distribution with the density 

of the offer, 𝑄[𝑥(1: 𝑘)|𝑧(1: 𝑘)], then the weighting 

coefficients in equation (16) will be calculated as 

follows : 

𝑤𝑖 ∝
𝑃[𝑥(1:𝑘)|𝑧(1:𝑘)]

𝑄[𝑥(1:𝑘)|𝑧(1:𝑘)]
.             (18) 

In the case of successive computations, at each 

iteration of the generation procedure, a weighted 

sample is generated that approximates the posterior 

density 𝑃[𝑥(1: 𝑘 − 1)|𝑧(1: 𝑘 − 1)], and then a new 

sample can be generated to approximate the density 

𝑃[𝑥(1: 𝑘)|𝑧(1: 𝑘)]. 
If we use Bayes' theorem, we can write: 

𝑃(𝑥(𝑘)|𝑧(1: 𝑘)) =

=
𝑃(𝑧(𝑘)|𝑥(𝑘))𝑃(𝑥(𝑘)|𝑧(1: 𝑘 − 1))

𝑃(𝑧(𝑘)|𝑧(1: 𝑘 − 1))
. 

If the condition is fulfilled  

𝑄(𝑥(𝑘)|𝑥(1: 𝑘 − 1), 𝑧(1: 𝑘)) = 𝑄(𝑥(𝑘)|𝑥(𝑘 −

1), 𝑧(𝑘)), 

that is, the density supply depends only on 𝑥(𝑘 − 1) 

and 𝑧(𝑘).  
The following expression can be used for 

repeated (recursive) evaluation of weighting factors 

[30]: 

𝑤𝑖(𝑘) ∝ 𝑤𝑖(𝑘 −

−1)
𝑃(𝑧(𝑘)|𝑥𝑖(𝑘))𝑃(𝑥𝑖(𝑘)|𝑥𝑖(𝑘−1))

𝑃(𝑥𝑖(𝑘)|𝑥𝑖(𝑘−1),𝑧(𝑘))
. 

         (19) 

The filtered posterior distribution can be 

approximated as follows: 

                            𝑃(𝑥(𝑘)|𝑧(1: 𝑘)) ≈

≈ ∑ 𝑤𝑖(𝑘)𝛿(𝑥(𝑘)

𝑁𝑆

𝑖=1

− 𝑥𝑖(𝑘)). 

       (20) 

It should be emphasized that the weighting 

coefficients, 𝑤𝑖(𝑘), must be normalized in such a 

way that ∑ 𝑤𝑖(𝑘) = 1.
𝑁𝑆
𝑖=1

The selection of the proposed density is one of 

the most important points in the particle filter design 

procedure. Possible methods of its selection, as well 

as their advantages and disadvantages, are 

considered in [30].  

Often, the prior distribution of the data is used 

as the supply density: 

𝑄 (𝑥(𝑘)|𝑥𝑖(𝑘 − 1), 𝑧(𝑘))

= 𝑃 (𝑥(𝑘)|𝑥𝑖(𝑘 − 1)). 
(21) 

In this case, the expression is simplified to the 

form: 

)).(|)(()1()( kxkzPkwkw iii  (22) 

But such a choice of supply density cannot be 

used to solve all problems. 

Basic algorithm. The sequential importance 

sampling algorithm is proposed as the basic one for 

the granular filter.  

The elements 𝑥𝑖(1: 1), in the weighted sample 

at the first stage {𝑥𝑖(1: 1),
1

𝑁𝑆
}

𝑖=1

𝑁𝑆
  are generated 

from the initial distribution 𝑃(𝑥(1)) . Since this 

distribution is relevant, no adjustment of values is 

required, and all weighting factors must have the 

same values, i.e.:  𝑤𝑖(1) = 1 𝑁𝑆⁄ . If we have a 

verified sample at step (𝑘 − 1), then the procedure 

for generating a weighted sample at step k can be 

represented by the pseudocode from Table 1. 

For this and all subsequent filtering algorithms, 

the posterior distribution is approximated using (20), 

and the estimate of the conditional mathematical 

expectation of the state, 𝑥(𝑘),  is determined as 

follows: 

𝑥(𝑘) = ∑ 𝑤𝑖(𝑘)𝑥𝑖(𝑘).

𝑁𝑆

𝑖=1

(23) 

Resampling of particle samples. The 

implementation of the SIS filter often leads to the 

problem of degeneracy of the weight coefficients, 

when after a certain number of iterations all 

coefficients, except one, take on small weights. 

Since the dispersion of the weighting 

coefficients increases over time, it is impossible to 

avoid the phenomenon [26, 30]. This degeneracy is 

caused by the fact that a significant part of the 

calculations is spent on updating particles that 

practically do not affect the approximated 

distribution, 𝑃(𝑥(𝑘)|𝑧(1: 𝑘)).  

An approach to reducing the degeneracy effect 

through the use of particle resembling is proposed. 

The main idea of the algorithm is to remove particles 

with a small weight and focus on particles with a 

large weight.   
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Table 1. Algorithms of granular filtering 

No. Algorithm name Algorithm pseudocode 

1 

Algorithm of Sequential 

Sampling by Importance 

(SIS). Base 

Algorithm 1: SIS Particle Filter 

[{𝑥𝑖(𝑘), 𝑤𝑖(𝑘)}𝑖=1
𝑁𝑆 ]= SIS [{𝑥𝑖(𝑘 − 1), 𝑤𝑖(𝑘 − 1)  }𝑖=1 

𝑁𝑆 , 𝑧(𝑘)] 
FOR 

— generate 𝑥𝑖(𝑘)~𝑞 (𝑥(𝑘)|𝑥𝑖(𝑘 − 1), 𝑧(𝑘)). 

 — assign the particle 𝑥𝑖(𝑘) weight 𝑤𝑖(𝑘)  
  according to (28) 

END FOR 

2 Particle resampling algorithm 

Algorithm 2: Resampling Algorithm 

[{𝑥𝑗∗
(𝑘), 𝑤𝑗(𝑘), 𝑖𝑗}

𝑗=1

𝑁𝑆
]= RESAMPLE [{𝑥𝑖(𝑘), 𝑤𝑖(𝑘), 𝑖𝑗}𝑖=1

𝑁𝑆 ]

 Initialize distribution function (DF): 𝑐(1) = 0  
FOR 𝑖 = 2, 𝑁𝑆

̅̅ ̅̅ ̅̅   
— Construct DF: 𝑐(𝑖) = 𝑐(𝑖 − 1) + 𝑤𝑖(𝑘)  
END FOR 

Start DF from beginning: 𝑖 = 1  
Generate initial point: 𝑢(1)~𝑈[0, 𝑁𝑆

−1]. 
FOR 𝑗 = 1, 𝑁𝑆

̅̅ ̅̅ ̅̅   
— Move along DF: 𝑢(𝑗) = 𝑢(1) + 𝑁𝑆

−1(𝑗 − 1) 
— WHILE 𝑢(𝑗) > 𝑐(𝑖) 
— 𝑖 = 𝑖 + 1 
— END WHILE 

— Assign new value: 𝑥𝑗∗
(𝑘) = 𝑥𝑖(𝑘)  

— Assign weight: 𝑤𝑗(𝑘) = 𝑁𝑆
−1 

— Assign basic index: 𝑖𝑗=i 
END FOR 

3 

Sequential Importance 

Sampling with Resampling 

Filter (SISR) 

Algorithm 3: SIR Particle Filter 

[{𝑥𝑖(𝑘), 𝑤𝑖(𝑘)}𝑖=1
𝑁𝑆 ]= SIR [{𝑥𝑖(𝑘), 𝑤𝑖(𝑘)}𝑖=1

𝑁𝑆 , 𝑧(𝑘)] 

FOR 𝑖 = 1, 𝑁𝑆
̅̅ ̅̅ ̅̅  

— Generate 𝑥𝑖(𝑘)~𝑝(𝑥(𝑘)|𝑥𝑖(𝑘 − 1)) 

— Compute 𝑤𝑖(𝑘) = 𝑝(𝑧(𝑘)|𝑥𝑖(𝑘)) 
END FOR 

Compute total weight: 𝑡 = ∑ 𝑤𝑖(𝑘)
𝑁𝑆
𝑖=1  

FOR 𝑖 = 1, 𝑁𝑆
̅̅ ̅̅ ̅̅  

— Normalize i-th weight: 𝑤𝑖(𝑘) = 𝑡−1𝑤𝑖(𝑘) 
 END FOR 

Perform resampling using algorithm 2  

(Resampling Algorithm): 

— [{𝑥𝑖(𝑘), 𝑤𝑖(𝑘), − }𝑖=1
𝑁𝑆 ]= RESAMPLE [{𝑥𝑖(𝑘), 𝑤𝑖(𝑘)}𝑖=1

𝑁𝑆 ] 

Source: compiled by the authors 

At this stage, a new set of random values is 

generated {𝑥𝑖∗
(𝑘)}

𝑖=1

𝑁𝑆
, an approximate discrete 

distribution is used 𝑃(𝑥(𝑘)|𝑧(1: 𝑘)) , which is 

calculated using (20), thus  

𝑃{𝑥𝑖∗
(𝑘) = 𝑥𝑗(𝑘)} = 𝑤𝑗(𝑘). 

The numbers generated in this way create a 

sequence of independent identically distributed 

random numbers from the distribution (20) with 

weighting coefficients; 𝑤𝑖(𝑘) = 1 𝑁𝑆.⁄  The numbers 

generated in this way create a sequence of 

independent identically distributed random numbers 

from the distribution (20) with weighting 

coefficients; 𝑤𝑖(𝑘) = 1 𝑁𝑆.⁄   

The pseudocode of the proposed resampling 

procedure is given in Table 1. The procedure is 

computationally simple point of view, and also 

provides for saving the indices of each element of 

the new sample, due to the use of the index from the 

previous sample for further use. 

The procedure has a number of disadvantages: 

it reduces the possibilities for parallel calculations; 
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particles with a large weight can be used repeatedly. 

This is called impoverishment of the sample, and 

then all the particles can converge into one particle 

in a few iterations. 

Sequential importance sampling with 

resampling filter (SISR). A Monte Carlo procedure 

is proposed that can be used to solve the problems of 

recursive Bayesian filtering. The procedure has 

practically no restrictions on its application. 

The functions 𝒇(∙,∙)  and 𝒉(∙,∙)  in (1) and (2) 

must be known; it should also be possible to 

generate pseudo-random sequences of the noise 

distribution, 𝑃(𝑣(𝑘 − 1)), and the prior distribution, 

𝑃(𝑥(𝑘)|𝑥(𝑘 − 1)), as well as determine the value of 

the density distribution 𝑃(𝑧(𝑘)|𝑥(𝑘)),  at certain 

points with an accuracy of at least up to a common 

constant. 

The SISR algorithm was obtained from the SIS 

algorithm with the appropriate selection of the 

following elements: 

 the supply density, 

𝑄 (𝑥(𝑘)|𝑥𝑖(𝑘 − 1), 𝑧(𝑘)), can be replaced by the 

prior distribution, 𝑃 (𝑥(𝑘)|𝑥𝑖(𝑘 − 1)); 

 a resampling step is performed at each time 

point. 

This choice of supply density proves the 

necessity of selecting implementations from 

𝑃 (𝑥(𝑘)|𝑥𝑖(𝑘 − 1)).  

The implementation of 𝑥𝑖(𝑘)~𝑃(𝑥(𝑘)|𝑥𝑖(𝑘 −
1)) can be done by first generating noise and then 

computing 𝑥𝑖(𝑘) = 𝑓 (𝑥𝑖(𝑘 − 1), 𝑣𝑖(𝑘 − 1)). 

For this particular choice of supply density, the 

weight update expression takes the form (22). Given 

that resampling is carried out at each moment of 

time, we have 𝑤𝑖(𝑘 − 1) = 1 𝑁𝑆 ∀𝑖,⁄  and then 

𝑤𝑖(𝑘) ∝ 𝑃 (𝑧(𝑘)|𝑥𝑖(𝑘)). (24) 

The weights specified in (24) are normalized 

before the resampling phase. The pseudocode of the 

algorithm is given in Table 1. 

DEVELOPMENT OF THE 

ARCHITECTURE OF THE INFORMATION 

ANALYTIC SYSTEM 

To solve forecasting problems, the architecture 

of the information-analytical system is proposed 

(Fig. 2). The system consists of the following main 

components: user interface, information storage 

subsystem, data analysis and preprocessing 

subsystem, modeling subsystem, forecast 

construction and evaluation subsystem, visualization 

subsystem. 

The information storage subsystem contains the 

necessary computational procedures, sets of models 

and forecast quality criteria, statistical data, and 

relevant expert assessments. The data and 

knowledge required for their further processing are 

collected and stored in a database and knowledge 

base (DKB). 

The subsystem of data analysis and preliminary 

processing consists of the following components: a 

unit of analysis and evaluation of probabilistic 

statistical information and a unit of data filtering. In 

turn, the analysis block provides the following data 

pre-processing procedures: identification and filling 

in of gaps in data, detection of anomalous values and 

their processing, identification of nonlinearities, 

non-stationarity of data and their types, 

normalization of data. Because different types of 

filters produce different effects on the data, they are 

best applied to combined statistical data filtering 

procedures capable of producing the desired 

smoothing effects. The information-analytic 

forecasting system uses a block of combined 

filtering based on digital, optimal and probabilistic 

Bayesian filters. 

The simulation subsystem consists of a 

procedure for dividing the data set prepared for 

simulation into two samples (training and test) and a 

simulation block. The modelling block involves the 

development of basic alternative forecast models 

and their quality assessment based on a set of 

criteria. 

The subsystem for building and evaluating 

forecasts consists of a block for building forecasts 

based on basic models, a block for combining 

forecasts, a block for ensemble learning, and a block 

for assessing the quality of forecasts based on a set 

of quality metrics. The functional capabilities of the 

system are easily modified and expanded thanks to 

the block design of the system. Blocks for 

combining forecast values and ensemble learning are 

provided in the forecasting subsystem for the 

opportunity to improve the quality of forecast values 

of basic models. 

The visualization subsystem is designed to 

visualize the performance of each subsystem and 

make quick decisions at each step of data 

processing.
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Fig. 2. The architecture of the information-analytic forecasting system 
           Source: compiled by the authors 

Example. As an example of forecasting based 

on the systematic use of non-linear filtering 

methods, the task of forecasting the prices of Google

shares is considered. A data set is loaded into the 

information storage system, which contains 

information about the value of the company in the 

period from January 1, 2016 to May 26, 2019. These 

data were collected from the site 

https://finance.yahoo.com/. 

After loading in the analysis subsystem and pre-

preparation of the data, the analysis of the structure 

and types of the data was first performed, and the 

missing values were processed. The data is 

characterized by irregular registration of 

observations, which leads to a large number of 

missing values and masking of possible seasonal 

fluctuations. This makes the forecasting task quite 

difficult. Kalman smoothing was used to restore 

gaps in the time series [31, 32]. Using a set of 

statistical tests (ADF, KPSS, PP), the original series 

was checked for stationarity. The result of the 

verification was a conclusion about the non-

stationarity of the process, which is reflected by the 

set of observed time series values. No stationarity of 

the process is confirmed by the nature of the values 

of the sample autocorrelation functions ACF and 

PACF. Visual analysis of the data made it possible 

to decide on the choice of modeling method. First of 

all, one should take into account the dominant role 

of the trend present in the data, which represents 

non-linear and non-stationary behavior. There are 

also templates that reflect the seasonal behavior of 
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the data to be reflected in the models. However, the 

degree of their influence is much smaller. To 

implement the filtering procedure, various types of 

nonlinear filters from the filtering block were used. 

ARIMA statistical models, the method of fitting 

generalized additive models (GAM), Bayesian 

structural time series models (BSTS) [33] and 

forward propagation artificial neural networks 

(NNAR) are used in the modeling block as basic 

forecasting models. These methods were chosen 

because of their ability to recognize complex 

patterns in time series. 

Table 2, Table 3 and Table 4 show a 

comparison of the results of the quality assessment 

of basic models and forecast values without 

application and with various options for applying 

filters.  

Table 2. The quality of models and forecasts without the use of a filtering unit 

Model type 

Model quality Forecast quality 

2R
 )(2 ke DW MSE MAE MAPE Theil 

ARIMA (0,1,0)(2,0,0)7 0.99 25487.25 2.18 67.93 62.57 5.19 0.047 

GAM (annual and weekly seasonal 

components) 
0.99 26655.77 2.21 87.02 83.88 6.13 0.052 

BSTS (the component of the linear 

local trend + the component of the 

autoregressive process) 

0.99 25391.39 2.13 42.81 40.56 4.27 0.033 

NNAR (n=10, Sigmoid, maxit=5000) 0.99 25088.74 2.11 37.29 32.72 3.99 0.026 
Source: compiled by the authors 

Table 3. Quality of models and forecasts using digital filtering 

Model type 

Model quality Forecast quality 

2R
 )(2 ke DW MSE MAE MAPE Theil 

ARIMA (0,1,0)(2,0,0)7 0.99 23355.54 2.10 65.01 60.73 4.54 0.045 

GAM (annual and weekly seasonal 

components) 
0.99 24132.15 2.08 85.29 79.34 5.06 0.048 

BSTS (the component of the linear 

local trend + the component of the 

autoregressive process) 

0.99 23861.65 2.07 38.15 36.11 3.79 0.030 

NNAR (n=10, Sigmoid, maxit=5000) 0.99 21887.54 2.05 33.35 29.52 3.04 0.021 
Source: compiled by the authors 

Table 4. Quality of models and forecasts with systematic application of

nonlinear filtering methods 

Model type 

Model quality Forecast quality 

 

 )(2 ke DW MSE MAE MAPE Theil 

ARIMA (0,1,0)(2,0,0) 0.99 24453.1 2.12 62.80 57.65 4.09 0.037 

GAM (annual and weekly seasonal 

components) 
0.99 24335.12 2.13 83.45 76.12 4.88 0.035 

BSTS (the component of the linear 

local trend + the component of the 

autoregressive process) 

0.99 25061.08 2.10 34.07 30.75 3.27 0.029 

NNAR (n=10, Sigmoid, maxit=5000) 0.99 23881.14 2.07 29.24 23.13 2.71 0.019 
Source: compiled by the authors 

2R
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Fig. 3. Scheme of the method of improving the quality of forecast values 
Source: compiled by the authors 

The digital filter is used in the form of 

exponential smoothing based on the Holt and Holt-

Winters methods, due to the presence of trend and 

seasonality in the data. The filter prepares the data to 

build the state space model that is needed to apply 

the optimal filters. An extended Kalman filter of the 

first order is implemented as an optimal filter. The 

evaluation of the process, which is made by EKF, is 

used to build an acceptable model of dispersion 

dynamics. The probabilistic filter generates a 

predictive variance distribution that is needed to 

estimate the predictive values. A granular filter with 

a basic sequential importance sampling (SIS) 

algorithm was used as a probabilistic filter. The 

combination of filters in the filtering unit was 

selected experimentally. Filter parameters were 

determined experimentally. From the above results, 

it can be concluded that the systematic use of 

nonlinear filtering methods significantly improves 

the quality indicators of basic models. 

To improve the quality of forecasting on the 

basis of prepared data and on the basis of nonlinear 

filtering methods, the method [34] was applied to 

solve the forecasting problem, the structural diagram 

of which is presented in Fig. 3. The first stage of the 

method is the process of analysis and preprocessing 

of the data set. At this stage, the following 

procedures are implemented: detection and 

processing of gaps in the data set, detection of 

anomalies, checking for non-linearity, non-

stationarity and their consideration, filtering and 

smoothing of data, etc. After this stage, the primary 

data set is completely prepared for the modeling 

process. At the second stage, the data set is divided 

into two parts: training and test. The next step of the 

modeling stage is the construction of basic 

predictive models. The base models are built on the 

basis of selected methods. 

They are checked for adequacy using quality 

metrics, the values of which are transferred to the 

model evaluation results block. Preliminary 

forecasts are formed from the basic models at the 

forecasting stage. Assessments of the quality of 

models are the basis for the formation of weighting 

factors when combining forecasts. The final stage of 

the methodology is the stage of combining, at which 

the method of combining is determined and its 

effectiveness is determined. If an improvement in 

forecast accuracy is not found, it is necessary to 

return to the stage of forming basic models, or to 

change their number and type of combination. Such 

a structural scheme fully corresponds to the process 

of building combined forecasts for time series based 

on simple averaging of forecasts, weighted 

combination of forecasts and regression [33]. To 

increase the accuracy of the combined forecast, the 

forecasting procedure is performed on the models 

with close variance values. The GAM and ARIMA 

models have variance values that are significantly 

different from the variance of the other two models. 

Therefore, these models were not considered in the 

next iteration of combining forecasts. Table 5 shows 

a comparison of the forecast scores for the Google 
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time series for the BSTS model, NNAR, and the 

combined model.  

Table 5. Comparison of estimates of forecasting 

results for time series Google 

Model RMSE MAE MAPE Theil 

BSTS  34.07 30.75 3.28 0.027 

NNAR  29.24 23.13 2.95 0.019 

Combination 27.24 21.13 2.71 0.017 

Source: compiled by the authors 

Fig. 4. Results of time series forecasting using a 

combined model 
Source: compiled by the authors 

From the analysis of the table, it follows that the 

combined forecast model exhibits the best quality 

indicators compared to the base models. A graphical 

representation of the prediction results using the 

combined model is shown in Fig. 4. The 80 % and 95 % 

prediction intervals for each component and their 

combination are shown. The figure shows only the 

forecast part. 

CONCLUSIONS 

The study investigated the systematic use of 

nonlinear data filtering methods in the problems of 

intelligent data analysis and machine learning. The 

analysis of modern methods of digital, optimal and 

probabilistic nonlinear filtering of statistical data and the 

peculiarities of their application in solving the problems 

of evaluating the states of dynamic systems is carried out. 

The application of the Kalman filter and its modifications 

for solving nonlinear filtering problems is analyzed. The 

classification of nonlinear filtering methods is presented. 

The basis of the classification is digital, optimal and 

probabilistic filters. Non-recursive and recursive digital 

filters are studied. The formulation of the problem of 

optimal filtering based on the Kalman filter is considered. 

The filtering equation for a free dynamic system based on 

the state space model of a discrete system is given. The 

extended Kalman filter and its modifications are 

considered. The Bayesian method of estimating the state 

of a nonlinear stochastic system is presented. The 

problem of linear and nonlinear probabilistic filtering is 

considered. Three filters are considered as examples of 

probabilistic filters: an unscented Kalman filter, a point 

mass filter, and a granular filter. The granular filtering 

algorithm and its modifications are considered in detail. 

The architecture of the information-analytical system for 

solving forecasting problems has been developed. As an 

example of forecasting non-stationary process based on 

the systematic use of non-linear filtering methods, the 

task of forecasting the prices of Google shares is 

considered. A comparison of the quality assessment 

results of basic models and forecast values without 

filtering and with different options for applying filters was 

carried out. To improve the quality of forecasting based 

on prepared data and based on nonlinear filtering 

methods, a method based on combined forecasts was used 

to solve the forecasting problem. The systematic use of 

non-linear filtering methods increases the efficiency of 

data preparation when solving the problems of intelligent 

data analysis and machine learning. 
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АНОТАЦІЯ 

У статті описано підхід до системного використання методів нелінійної фільтрації даних в задачах інтелектуального 
аналізу даних та машинного навчання. Розглянуто поняття фільтрації та нелінійної фільтрації. Проведено аналіз сучасних 
методів оптимальної та ймовірнісної нелінійних фільтрацій статистичних даних й особливості їх застосування в розв’язанні 
задач оцінювання станів динамічних систем. Проаналізовано застосування фільтра Калмана та його різновидів для 
вирішення задач нелінійної фільтрації. Наведено класифікацію методів нелінійної фільтрації. Основу класифікації 
складають цифрові, оптимальні та ймовірнісні фільтри. Досліджено нерекурсивні та рекурсивні цифрові фільтри. 
Розглянуто постановка задачі оптимальної фільтрації на основі фільтра Калмана. Приведено рівняння фільтрації для вільної 
динамічної системи, засноване на моделі простору станів дискретної системи. Розглянуто розширений фільтр Калмана і 
його модифікації. Представлено байєсівський метод оцінки стану нелінійної стохастичної системи. Розглянуто проблема 
лінійної та нелінійної ймовірнісної фільтрації. В якості прикладів ймовірнісних фільтрів розглянуто три фільтра: фільтр 
Калмана без запаху, фільтр точкової маси та гранулярний фільтр. Детально розглянуто алгоритм гранулярної фільтрації та 
його модифікації. Розроблено архітектуру інформаційно аналітичної системи для вирішення задач прогнозування. Система 
складається з наступних основних компонентів: інтерфейс користувача, підсистема зберігання інформації, підсистема 
аналізу та попередньої обробки даних, підсистема моделювання, підсистема побудови та оцінки прогнозів, підсистема 
візуалізації. В якості прикладу прогнозування на основі системного використання методів нелінійної фільтрації розглянуто 
завдання прогнозування цін акцій компанії Google. Проведено порівняння результатів оцінювання якості базових моделей 
та прогнозних значень без фільтрації та з різними варіантами застосування фільтрів. Для покращення якості прогнозування 
на підготовлених даних та на основі методів нелінійної фільтрації для вирішення задачі прогнозування застосовано метод на 
основі комбінованих прогнозів. Представлено результати прогнозування з використанням комбінованої моделі. 

Ключові слова: нелінійна фільтрація; оптимальний фільтр Калмана;  розширений фільтр Калмана; ймовірнісний 
фільтр; алгоритми гранулярної фільтрації; інформаційно-аналітична система; комбіновані прогнози 
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