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ABSTRACT 

Mathematical models of the human eye serve as adaptive tools for analyzing and predicting ophthalmological parameters, con-
sidering their interrelations and individual patient characteristics. Their application in ophthalmology enhances the quality of diag-
nostics, monitoring, and treatment, ultimately improving patients' quality of life. The developed eye condition model is based on a 
mathematical function that integrates physiological eye parameters, each assigned a weight coefficient to determine its impact on the 
overall condition index. The model accounts for complex nonlinear interactions between parameters, allowing for a more accurate 

representation of physiological processes. To optimize the weight coefficients, the L-BFGS-B method is employed—an iterative 
algorithm that efficiently minimizes the loss function and ensures high accuracy in adapting the model to individual patient data.This 
model offers several advantages: it enables early diagnosis of diseases such as glaucoma, cataracts, and macular degeneration, tailors 
treatment plans based on individual patient parameters, and facilitates disease monitoring and progression prediction for timely ther-
apy adjustments. Furthermore, the model can be integrated with modern technologies, including virtual and augmented reality sys-
tems, as well as artificial intelligence for automated diagnostics. Thus, the proposed mathematical model serves as a universal tool 
for analyzing eye conditions and developing innovative diagnostic and therapeutic technologies. By incorporating parameter interde-
pendencies and their effects on the physiological state of the eye, it provides ophthalmologists with a powerful instrument for en-

hancing diagnostics, prediction, and disease monitoring in vision healthcare. 
Keywords: Human eye; mathematical modeling; integral index; nonlinear dependencies; optimization methods; adaptability; 

monitoring; prediction 
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INTRODUCTION 

Mathematical models of eye health are essential 

tools in ophthalmology, offering advanced IT solu-

tions for the diagnosis, monitoring, and treatment of 
eye diseases [1, 2], [3]. These models are applied in 

the following areas. 

 Early Diagnosis: Automated detection of dis-
eases at early stages improves treatment outcomes  

[3, 4]. 

 Monitoring: Tracking chronic diseases helps 

assess therapy effectiveness and adjust treatment 
plans [5, 6]. 

 Personalized Approach: Adaptive models 

account for individual patient characteristics to op-
timize treatment. 

© Vychuzhanin V., Vychuzhanin А.,  

    Guzun O., Zadorozhnyy O., 2025 

 Enhanced Precision: Modeling reduces risks 

during surgical interventions [6]. 

 Scientific Research: Studying physiological 

processes facilitates the development of new diag-

nostic methods [7]. . 

 Cost Optimization: Automation reduces un-

necessary medical procedures, increasing healthcare 

system efficiency. 

Models incorporating parameters such as intra-

ocular pressure, visual field index, and perfusion 

pressure allow for predicting the risk of glaucoma 

and other diseases [8, 9], [10].  

The integration of machine learning algorithms 

enhances diagnostic personalization and fosters the 

implementation of advanced IT solutions in oph-

thalmology [8, 11]. 
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1. ANALYSIS OF LITERARY DATA AND 

PROBLEM STATEMENT 

1. Diagnosis and Vision Correction: Models 

improve diagnostic accuracy and enable personalized 

treatment, particularly in analyzing visual impairments 

and accommodation.  

However, their application requires high-quality 

data and expert interpretation [8, 12]. 

2. Prediction of Retinal Diseases: Predictive 

models for retinal pathologies enhance diagnosis and 

therapy but require data standardization and solutions 

for interpretation challenges [13, 14], [15]. 

3. Modeling Visual Processes: Computational 

models of eye-brain interactions are used in diagnosing 

visual disorders and developing computer vision tech-

nologies.  

However, their progress is limited by computation-

al costs and generalization difficulties [16, 17], [18]. 

4. Vision Correction and Restoration: Laser 

vision correction based on mathematical models in-

creases procedure safety.  

Key challenges include the complexity of biologi-

cal processes and high computational requirements 

[17]. 

5. Age-Related Vision Changes: Models ana-

lyzing age-related changes facilitate early diagnosis 

and personalized treatment but demand precise data 

across age groups and consideration of complex bio-

logical processes [19, 20]. 

6. VR/AR Technologies: Integrating models 

with virtual and augmented reality systems expands 

diagnostic and treatment capabilities, facing challenges 

in computational demands [17]. 

7. Eye Movement Dynamics: These models are 

valuable in medicine and VR/AR interaction technolo-

gies. Their effectiveness is growing with advances in 

machine learning and improved tracking accuracy [17]. 

8. Intraocular Pressure and Heat Exchange 

Models: These assist in predicting diseases and per-

sonalizing treatment but require validation and im-

proved data quality [21, 22]. 

Thus, developing a universal mathematical model 

of the eye that considers a wide range of physiological 

and external factors remains a pressing task. Such 

models can integrate data to improve diagnosis, predic-

tion, and treatment of ophthalmological diseases [23, 

24]. 

The aim is to develop an adaptive mathematical 

model of the human eye to predict ophthalmic diseases, 

improve diagnostic accuracy, optimize treatment and 

improve the quality of life of patients. 

To achieve this objective, the following tasks are 

set: 

 develop a comprehensive model that inte-

grates key ophthalmological parameters and accounts 

for nonlinear dependencies; 

 analyze complex interactions between physi-

ological parameters (e.g., intraocular pressure, perfu-
sion, and blood flow) and external factors (e.g., stress, 
lifestyle, and environmental conditions); 

 optimize model parameters using advanced 

numerical methods (L-BFGS-B) to improve prediction 
accuracy and sensitivity to data variations; 

 ensure adaptability by incorporating patient-

specific characteristics for personalized diagnostics and 
treatment strategies; 

 enhance practical applicability by integrat-

ing the model with AI-based decision-making systems, 
visualization tools (VR/AR), and real-time treatment 
optimization techniques. 

2. MAIN RESEARCH RESULTS 

The developed mathematical model of the human 
eye is presented in the form of an integral index of its 

state (Seye) and is a development of the previously 
developed model of the eye state [25], in which the 
integral index Seye is calculated taking into account 
the non-linearity of parameters and their mutual rela-

tions, the weight of each parameter and changes de-
pending on the patient's age, blood flow and other fac-
tors. The Seye model describes the eye condition as a 
function of key parameters 

𝑆𝑒𝑦𝑒 = 𝑘1 ⋅ 𝑙𝑜𝑔(𝐼𝑂𝑃 + 1) + 𝑘2 ⋅ 𝑙𝑜𝑔(𝑅𝑄 + 1) + 

+𝑘3 ⋅ (𝐵𝐶𝑉𝐴 − ℎ)2 + 𝑘4 ⋅ 𝑙𝑜𝑔(𝑇𝑟 + 1) + 𝑘5 ⋅ 
∙ 𝑒−𝑉𝐹1 + 𝑘6 ⋅ 𝑙𝑜𝑔(1 + 𝑃𝑝𝑒𝑟𝑓) + 𝑘7 ⋅ 

⋅ 𝑙𝑜𝑔 (1 +
𝛼

𝑡1
) + 𝑘8 ⋅ 𝑙𝑜𝑔(𝑎𝑔𝑒 + 1) + 

+𝑘9 ⋅ 𝑒
𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙𝑓𝑎𝑐𝑡𝑜𝑟 , 

(1) 

where IOP is intraocular pressure (normal: 10-21 

mmHg, range: 5-60 mmHg); RQ is volumetric intraoc-

ular blood flow (normal: 3.2-3.5‰, range: 0.5-9.0 ‰); 

BCVA is visual acuity (normal: 1.0, range: 0-2.0); Tr is 

tear production (normal: 10-30 mm, range: 1.0-40.0 

mm); VFI is visual field index (normal: 100 %); Pperf

is perfusion pressure (normal: 55-80 mmHg, range: 20-

100 mmHg); α/t1 is vascular tone of intraocular vessels 

(normal: 18-20 %, range: 12-35 %); аditional_factor is 
additional factors (lifestyle, diseases, genetics, etc.);  

k1 … k9 are weighting coefficients.  

The developed mathematical model of eye health is 

represented by the integral indicator Seye, which ac-

counts for nonlinear dependencies between parameters, 

their interrelations, weighting coefficients, as well as 

age-related and physiological factors. 

The model is designed for the quantitative as-

sessment of the influence of various factors on eye 

health, including individual parameter characteristics. 

Nonlinearities are described using exponential and pol-

ynomial functions based on biological principles and 

empirical data [26, 27].  
The eye health model (1) takes into account fewer 

factors affecting eye health. This reduces the accuracy 
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of determining the state of the eye, and therefore af-

fects the accuracy of diagnosing and predicting its con-

dition. 

The new Seye model includes a larger number of 

factors and their non-linear interactions, which signifi-

cantly improves the accuracy of prediction compared 

to the previous version. This approach allows us to 

create a more accurate and adaptive representation of 

the model, which is formulated as follows: 

𝑆𝑒𝑦𝑒 = 𝑘1 ⋅ 𝑙𝑜𝑔(𝐼𝑂𝑃 + 1) ∙ 𝐴 + 𝑘2 ⋅ 𝑙𝑜𝑔(𝑅𝑄 + 1) ∙ 

     ∙  𝐵 +  𝑘3 ⋅  (𝐵𝐶𝑉𝐴 − 𝑓𝑜𝑓𝑐𝑒𝑡)
2

∙ 𝐴 + 𝑘4 ∙ 

⋅ 𝑙𝑜𝑔(𝑇𝑟 + 1) ⋅ 𝑙𝑜𝑔(𝑇𝑟 + 1) ∙ 𝐶 + 𝑘5 ∙ 
⋅ 𝑒−𝑉𝐹1 ∙ 𝐴 + 𝑘6 ⋅ 𝑙𝑜𝑔(1 + 𝑃𝑝𝑒𝑟𝑓) ∙ В + 

+𝑘7 ⋅ 𝑙𝑜𝑔 (1 +
𝛼

𝑡1
) ∙ 𝐷 +  𝑘8 ∙ 𝑙𝑜𝑔(𝑎𝑔𝑒 + 1) ∙ 𝐸 + 

+𝑘9 ∙ 𝑒𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑖_𝑓𝑎𝑐𝑡𝑜𝑟 ∙ 𝐹, 

(2) 

where A = 𝑓(𝑎𝑔𝑒, 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑠𝑡𝑎𝑡𝑢𝑠); 
             𝐵 = 𝑔(𝑏𝑙𝑜𝑜𝑑𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟ℎ𝑒𝑎𝑙𝑡ℎ); 

             𝐶 = ℎ𝑒𝑛𝑣(𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙𝑓𝑎𝑐𝑡𝑜𝑟); 

             𝐷 = ℎ𝑠𝑡𝑟𝑒𝑠𝑠(𝑠𝑡𝑟𝑒𝑠𝑠𝑙𝑒𝑣𝑒𝑙 , 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑙𝑒𝑣𝑒𝑙); 

             𝐸 = 𝑖(𝑙𝑖𝑓𝑒𝑠𝑡𝑦𝑙𝑒); 

            𝐹 = 𝑗(𝑔𝑒𝑛𝑒𝑡𝑖𝑐𝑓𝑎𝑐𝑡𝑜𝑟𝑠) 

In the eye condition model (2): 

f(age, 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑠𝑡𝑎𝑡𝑢𝑠)=1+0.1⋅age−0.05⋅
 𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑠𝑡𝑎𝑡𝑢𝑠; 

g(𝑏𝑙𝑜𝑜𝑑𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 , 𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟ℎ𝑒𝑎𝑙𝑡ℎ)=1+0.2⋅
log(𝑏𝑙𝑜𝑜𝑑𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒+1)−0.1⋅ 𝑣𝑎𝑠𝑐𝑢𝑙𝑎𝑟ℎ𝑒𝑎𝑙𝑡ℎ; 

henv( 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙𝑓𝑎𝑐𝑡𝑜𝑟)= 

1+0.3⋅exp(−0.01⋅ 𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙𝑓𝑎𝑐𝑡𝑜𝑟);

hstress(stress_level,activity_level)= 

1+0.05⋅stress_level−0.02⋅activity_level; 

i(life_style)=1+0.15⋅life_style; 

j(genetic_factors)=1+0.1⋅genetic_factors. 

foffset is used to centre the quadratic function in the 

model. It allows taking into account individual peculi-

arities of vision. For stabilization of calculations it al-

lows to avoid numerical instability. A fixed value is 

used. 

𝑑𝑖𝑠𝑒𝑎𝑠𝑒𝑠𝑡𝑎𝑡𝑢𝑠 = ∑ 𝜔𝑖

𝑛

𝑖=1

∙ 𝑑𝑖, 

𝑏𝑙𝑜𝑜𝑑𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =
𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐+2∙𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐

3
, 

𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡𝑎𝑙𝑓𝑎𝑐𝑡𝑜𝑟 =
∑𝑛 𝜑𝑖∙𝑒𝑖𝑖=1

∑ 𝜑𝑖
𝑛
𝑖=1

, 

𝑙𝑖𝑓𝑒𝑠𝑡𝑦𝑙𝑒 =
∑𝑛 𝜇𝑖∙𝑙𝑖𝑖=1

∑ 𝜇𝑖
𝑛
𝑖=1

  ,          

𝑔𝑒𝑛𝑒𝑡𝑖𝑐𝑓𝑎𝑐𝑡𝑜𝑟𝑠 = ∑ 𝑔𝑖 ∙ 𝑟𝑖𝑠𝑘𝑖
𝑚
𝑖=1 , 

where  𝑑𝑖 is presence of a specific disease (0-absent, 1-

present);   𝜔𝑖  is weighting coefficient reflecting the 

severity of the disease's impact (glaucoma – ω1=0.4, 
diabetic retinopathy – ω2=0.6); 𝑠𝑦𝑠𝑡𝑜𝑙𝑖𝑐 is systolic 

blood pressure; 𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐  is diastolic blood pressure; 

𝑒𝑖 is specific environmental factor; 𝜑𝑖  is weighting 

coefficient for each environmental factor; 𝑙𝑖 is specific 

lifestyle characteristic, such as physical activity;   𝜇𝑖 is
weighting coefficient for each lifestyle characteristic;  

𝑔𝑖 is presence of a specific genetic marker (0 or 1); 

𝑟𝑖𝑠𝑘𝑖 associated with this marker (0 or 1). 

The parameters IOP, RQ, BCVA, and VFI vary 
within normal limits, but their fluctuations significantly 
affect the condition of the eye [28]. Tr, IOP, and Pperf
are critically important for intraocular pressure and 

blood supply, while age and additional factors modify 
their influence through weighting coefficients. 

Parameter relationships in the model: 

 IOP ↔ Pperf: An increase in intraocular pres-

sure (IOP) reduces perfusion pressure (Pperf), impair-
ing eye blood supply and increasing the risk of ischem-
ic processes associated with glaucoma; 

 IOP ↔ RQ: High intraocular pressure can im-
pair blood flow in the retina, causing ischaemia and 
damage to the optic nerve, which is reflected in a de-
crease in RQ (intraocular volumetric blood flow coeffi-

cient (e.g. in glaucoma);. 

 Pperf ↔ RQ: Reduced perfusion pressure due to 
high IOP or low systemic arterial pressure results in 
reduced ocular blood flow, which worsens intraocular 

volume blood flow (RQ) exacerbating retinal ischaemia 
(e.g. in glaucoma, diabetes mellitus, retinal vein 
thrombosis);. 

 BCVA ↔ VFI: Loss of visual fields (VFI) is as-

sociated with progressive deterioration of visual func-
tion, including reduced visual acuity (BCVA) (glauco-
ma, high myopia); 

 age ↔ RQ, VFI: With age, there is an exponen-
tial decrease in the quality of intraocular volumetric 
blood flow (RQ), which causes a decrease in retinal 
blood supply and narrowing of visual fields (VFI) due 

to degenerative processes and age-related changes in 
the vascular system; 

 Tr ↔ IOP: Age has a direct relationship with 
tear production (Tr), and shows that age patients have 

reduced tear production and develop dry eye syndrome, 
which adversely affects the quality of life of patients; 

 α/t1 ↔ Pperf, RQ: Vascular tone (α/t1) directly 

affects blood flow in the retina by altering intraocular 
volume blood flow (RQ) and Pperf, leading to inade-
quate retinal blood supply and subsequently to degen-
erative processes on the ocular fundus (glaucoma, reti-

nal degeneration, diabetic retinopathy); 

 аditional_factors ↔ IOP, RQ: Stress, lifestyle 
and other external factors affect both intraocular pres-
sure (IOP) and retinal blood supply (RQ), altering the 

overall condition of the eye and affecting patients' 
quality of life. 

These relationships are not only logically justified 
but also supported by clinical and physiological data. 

The model accounts for nonlinear interactions between 
parameters, allowing for the analysis of their influence 
on eye health and the prediction of changes under vari-
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ous scenarios. These relationships are not only logical-

ly justified but also supported by clinical and physio-
logical data. The model accounts for nonlinear interac-
tions between parameters, enabling an analysis of their 
impact on eye health and the prediction of changes 

under various scenarios.  
The new Seye model  (Table 1) incorporates more 

factors and their nonlinear interactions, significantly 
improving predictive accuracy compared to the previ-

ous version. Previously, a change in intraocular pres-
sure (IOP) by 5-10 mmHg or a decrease in visual acui-
ty (BCVA) from 1.0 to 0.1 resulted in a sharp deteriora-
tion in eye health.  

Table 1. Comparison of eye state models 

Source: compiled by the authors 

Now, the influence of these parameters is modi-
fied by functions f(), g(), h(), i(), and j(), which account 

for age, diseases, and other factors. For instance, in 
elderly patients with hypertension, an increase in IOP
has a stronger impact than in younger individuals 
without comorbidities. Unlike the previous version, 

where parameters acted independently (k1, k2,...,k9), 
the new model describes them through interconnected 
and nonlinear functions.  

Exponential dependencies have been introduced 

to amplify the effects of factors such as vascular tone 
and blood pressure.  

For patients with low perfusion pressure (Pperf), 
these factors are critical, especially for those with hy-

pertension. For the first time, stress, physical activity, 
and environmental factors are considered through func-
tions h(stress_level, activity_level) and 
h(environmental_factor).  

For example, in individuals with high stress and 
low activity levels, a decrease in BCVA occurs more 
rapidly than in active and calm patients.  

Additionally, a component j(genetic_factors) has 
been added to account for genetic predisposition: even 
a slight increase in IOP can critically reduce Seye in 
such patients. Thus, parameter changes no longer pro-

duce fixed effects but instead depend on the context, 
including age, overall health, lifestyle, and genetics. 
This enhances the model’s adaptability but complicates 
its calibration due to the need to consider individual 

characteristics in specific conditions. For the purpose 
of studying the developed new Seye model  (2), Python 
code has been created to group factors within the mod-
el based on their physiological and clinical relation-

ships. 

The combination of operations (addition and mul-

tiplication) allows the model to account for complex 
interactions. Coefficient optimization helps adapt the 
model to the data while avoiding artifacts. Robustness 
against zeroing out factors ensures the model's reliabil-

ity when working with real-world data. The developed 
code version includes the following features: 

 generation of random parameters within speci-
fied ranges; 

 data visualization and analysis, including histo-
grams and dependencies; 

 optimization capabilities to identify values that 

minimize or maximize Seye. 
This makes the model not just a tool for calculat-

ing Seye but a more powerful instrument for in-depth 
analysis and the study of the influence of multiple fac-

tors on eye health. 
In the provided code, the scipy.optimize. minimize

function is used to optimize the coefficients k1, k2, ... 
,k9. Key aspects of using scipy.optimize. minimize in 

the code: 
Objective Function: The objective_function com-

putes the error between the calculated Seye (based on 
the current coefficients k) and the target value 

Seye,target.  
Initial Coefficient Values 
Optimization starts with an initial assumption 

where all coefficients are set to 1: 

     initial_k = np.ones(9)  # Initial coefficient values 
Coefficient Constraints 
To prevent excessive growth of the coefficients, a 

range of 0.1≤𝑘𝑖≤0.5 

bounds = [(0.1, 0.5)] * 9 
Optimization Process 
The L-BFGS-B method, suitable for constrained 

optimization tasks, is used. The minimize function 

takes the objective function, initial coefficients, model 
parameters, target Seye, and constraints as input. 

Optimization Results 

The target value target_Seye  is defined. 

 Seye is an integral measure of eye health, ob-
tained from clinical data. 

 Target_Seye  can be set as the average value 

among healthy patients in the corresponding age group 
or as a predicted optimal value based on available data. 

 Dynamic updates of target_Seye  are possible if 
time-series data is used (e.g., for monitoring disease 

progression). 
The optimization is performed. 

 During the calibration phase before practical 

application. 

 When adapting to a new patient (e.g., after up-
dating medical data). 

 As part of a self-learning process (if the model 

updates its weights based on new clinical data). 
After the optimization process is complete, the 

following results are obtained: 
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Optimized coefficient values:  

optimized_k = result.x 
Calculated Seye value based on the optimized coef-

ficients: 

optimized_Seye=calculate_Seye(params, optimized_k) 
Thus, scipy.optimize.minimize is applied to mini-

mize the difference between the calculated and target 

Seye values, ensuring the model adapts effectively to 

the given data. The developed code expands the capa-

bilities for studying the eye state model Seye. It incor-

porates permissible parameter ranges, such as IOP (in-

traocular pressure) from 5 to 60 mmHg and age from 1 

to 100 years. This allows simulation of various eye 

conditions through random variation of input data. Ad-

ditionally, the code includes an analysis of the Seye 
distribution, enabling histogram construction and pat-

tern identification. 

The optimization of the model’s weight coeffi-

cients is performed using the L-BFGS-B method from 

the SciPy library [29, 30], which efficiently handles 

smooth nonlinear functions using an approximated 

Hessian matrix. The method minimizes the Seye objec-

tive function by defining initial values, parameter 

bounds (0.1–0.5), and accounting for nonlinear de-
pendencies. 

Advantages of the Approach: 

 incorporation of nonlinearities through loga-

rithmic, exponential, and quadratic functions; 

 optimization of weights to fit a target Seye val-

ue; 

 constraint enforcement on coefficients prevents 

incorrect results; 

 model adaptability through consideration of age, 

disease presence, and lifestyle. 

The developed code ensures precise optimization 
of weight coefficients, enhancing the model's flexibil-

ity and adaptability. 

Fig. 1 illustrates the contour plot of the objective 

function for the coefficients k1 and k2 with other pa-

rameters fixed.The contour plot illustrates the relation-

ship between the loss function  

        𝐸𝑟𝑟𝑜𝑟 =
(𝑆𝑒𝑦𝑒−𝑡𝑎𝑟𝑔𝑒𝑡_𝑆𝑒𝑦𝑒)2

𝑡𝑎𝑟𝑔𝑒𝑡_𝑆𝑒𝑦𝑒2 ∙ 100%      (3) 

and the coefficients k1 and k2 while keeping other 
parameters fixed. It helps identify key trends, ana-

lyze the impact of parameters on outcomes, and op-
timize the model. The plot shows levels of the loss 
function: green areas correspond to minimal error 
values (optimal model parameters), while purple 

areas indicate maximum errors (largest deviations).  
The error range has been normalized to 0–

100%, where 0% corresponds to the minimum devi-

ation and 100% to the maximum observed in the 
training dataset. This normalization ensures that the 
error values are expressed in relative terms, making 
them more interpretable and comparable. 

Fig. 1. Contour plot of the target function for two 

coefficients k1 and k2 
Source: compiled by the authors 

The graph axes represent the values of coeffi-

cients k₁ (horizontal) and k₂ (vertical), spanning a range 

of 0–10. Tighter contour lines indicate high model sen-

sitivity to parameter changes. The minimum error val-

ue (0%) corresponds to the best parameter settings 

where Seye ≈ target_Seye, while the maximum error 

(100%) represents the highest deviation from the tar-

get. This plot is essential for determining optimal pa-

rameters, assessing loss function sensitivity, and identi-

fying local minima, ultimately improving model preci-

sion and stability. 

Key Aspects of the Optimization Code 

In the developed eye state model code, the section 

related to the optimization of weight coefficients and 

the calculated Seye value includes the following criti-

cal elements. 

1. Objective Function: Defined as objec-

tive_function, it minimizes the error between the calcu-

lated Seye value and the target value. 

2. Initial Coefficients: Set to initial_k = 

np.ones(9) (all coefficients initialized to 1). 

3. Parameter Constraints: Specified using bounds

to prevent coefficients from exceeding allowable rang-

es. 

4. Optimization: Utilizes the L-BFGS-B method 

from scipy.optimize.minimize. 

5. Results: Outputs the optimized coefficients 

and the calculated Seye value after optimization. 

Objective Function Definition and Optimization 

Algorithm: 

The algorithm for optimizing k1, k2,…,k9 using 

the L-BFGS-B method includes: 

 Objective: Minimize the target function by cal-

culating the optimal coefficients k1, k2,…,k9  to de-

termine the eye state while considering nonlinear de-

pendencies of the parameters. 

 Algorithm Steps. 

oInitialization. 

 Request values for parameters to analyze the eye 

state (IOP, RQ, BCVA, Tr, VFI, Pperf, α/t1, age, addi-
tional_factor). 
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 Set initial values for the coefficients  

k1, k2,…,k9 (e.g., within the range of 0.1 to 10.0). 

 Define constraints on the ranges of  

k1, k2,…,k9. 

Each coefficient k1, k2,…, k9 is restricted within a 

range: ai≤ki≤bi. 
This ensures the physical interpretability of the 

parameters and prevents invalid values. 

The method incorporates constraints using gradi-

ent projection. At each step, it verifies whether 

k1, k2,…,k9 exceed the boundaries [ai, bi]. If they do, 

the current value of ki is projected back into the valid 

range:  

𝑘𝑖 = 𝑝𝑟𝑜𝑗[𝑎𝑖,𝑏𝑖](𝑘𝑖) − min(max(𝑘𝑖, 𝑎𝑖), 𝑏𝑖) 

A function is defined to calculate the eye state in-

dicator Seye based on input parameters, including coef-

ficients. 

To define the objective function. 

 Describe the eye state function (calculate_Seye): 

This function depends on the input parameters and the 

optimized coefficients k1, k2,…,k9. It accounts for 

nonlinear relationships, such as: 

oLogarithmic dependencies for parameters IOP, 

RQ, Tr, α/t1, and Pperf. 

oParabolic dependencies for visual acuity 

(BCVA). 

oExponential dependencies for VFI and addition-

al_factor. 

 Compute the eye state (Seye) considering all pa-

rameters. 

 Define the objective function for minimization: 

This function calculates the error or deviation from the 

ideal eye state value based on the current values of k1, 

k2,…,k9. 

The objective function for minimization, aimed at 

calculating the eye state based on the current coeffi-

cients k1, k2,…,k9, is as follows: 
1

 𝑁
∑  𝑁

𝑖=1 (𝑆𝑒𝑦𝑒𝑝𝑟𝑒𝑑(𝑘1, 𝑘2, … 𝑘9, 𝑎𝑖) − 𝑆𝑒𝑦𝑒𝑜𝑏𝑠,𝑖)2(4) 

where Seyepred is value calculated using the model, in-

cluding nonlinear dependencies for all parameters;   
Seyeobs represents the reference or observed data; ai are 

the model parameters; N is the total number of obser-

vations. 

Equation (4) minimizes the average error across 

the entire dataset, allowing the coefficients  

k1, k2,…,k9 to be adapted for accurately describing the 

eye's state.  
Function (4):  

 Inputs: Takes coefficients k, a set of parameters, 

and observed values. 

 Process: Calculates Seye, predS for each parame-

ter set, computes the Mean Squared Error (MSE), and 

returns the MSE value for minimization. 
Model Exploration 

The model can be studied in several ways. 

1. Parameter Variation: By modifying parame-

ters, you can analyze their influence on Seye. 

2. Single-Parameter Focus: By fixing all parame-

ters except one, graphs can be created to study individ-

ual effects (e.g., how eye condition changes with in-

creasing IOP). 

3. Numerical Optimization: You can use optimi-

zation to identify parameter ranges where Seye indi-

cates pathology. 

4. Extreme Scenarios: Setting boundary values 

(e.g., maximum IOP and minimum BCVA) allows for 

evaluating the model's response in critical conditions. 

Fig. 2 illustrates the dependency of Seye on intra-

ocular pressure (IOP) with other parameters held con-

stant. The graph confirms the logarithmic nature of this 

relationship: at low IOP levels, a small increase signif-

icantly raises Seye, whereas at higher IOP, the effect 

diminishes. 

Physiological Interpretation: 

 Low IOP (<5 mmHg): Impairs retinal blood 

flow, reducing visual function. 

 Normal Range (10-21 mmHg): Corresponds to a 

moderate increase in Seye. 

 High IOP (>30 mmHg): Accelerates glaucoma 

progression, though its impact on Seye becomes less 

pronounced. 

Fig. 2. Eye Condition Seye Based on  

Changes in IOP 
Source: compiled by the authors 

The graph demonstrates a smooth curve, validat-

ing the model's correctness. Any abrupt changes ob-

served in real-world data might necessitate parameter 

refinement. Overall, the model accurately represents 

the impact of IOP on eye condition and aligns with 

clinical observations. 

Fig. 3 and Fig.4 show the dependencies of Seye

on the Visual Field Index (VFI) and volumetric intra-

ocular circulation (RQ) under fixed conditions.  

The graph in Fig. 3 demonstrates an exponential 

trend: increasing VFI (0-100 %) leads to a rise in Seye. 

Low VFI (≈0 %) is associated with pathological condi-
tions (e.g., glaucoma), while high VFI (≈100 %) corre-

sponds to better eye health. 
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Fig.3. Seye condition according to the results of 

VFI changes 
Source: compiled by the authors 

Fig. 4. Eye Condition Seye Based on  

Changes in RQ 
Source: compiled by the authors 

The graph in Fig. 4 shows a logarithmic relation-

ship: increasing RQ (0.5%-9%) raises Seye, but the 

effect diminishes over time. When RQ < 3‰, signs of 

vascular abnormalities are observed, while exceeding 

this threshold results in less pronounced improvements 

in Seye. 

Both parameters significantly impact Seye: VFI

exhibits an exponential effect, while RQ follows a log-

arithmic trend. These findings are critical for diagnosis, 

prognosis, and treatment customization. 

The obtained ranges of changes are important for 

diagnostics of the eye condition. The ranges of Seye 

values allow preliminary assessment of the eye condi-

tion. 

Seye > 7.5 - corresponds to a healthy condition. 

Seye ≈ 6.0-7.5 - may indicate initial functional 

changes. 

Seye < 6.0 - there may be pathological processes 

that require diagnosis. 

This allows to use Seye as an additional criterion 

for assessment of eye condition and possible risk of 

diseases. 

Diagnostic and Prognostic Capabilities of the 

Seye Model 

The developed Seye model enables not only the 
assessment of current eye conditions but also provides 

potential for diagnosis and prognosis of ophthalmolog-

ical diseases based on computational simulations. The 

results obtained from Fig. 2, 3, and 4 demonstrate how 

different physiological parameters influence Seye val-

ues, allowing for risk assessment and trend analysis. 

From the simulation results, specific Seye ranges can 

be associated with various eye conditions (Table 2). 

Example: In Fig. 2 (Seye based on IOP), a pro-

gressive increase in IOP beyond 25 mmHg leads to a 

drop in Seye below 7.0, suggesting early signs of intra-

ocular hypertension, which is a major risk factor for 

glaucoma development. 

Table 2. Diagnostic Interpretation Based on Seye 

Values 

Source: compiled by the authors 

Example: Fig. 3 (Seye based on VFI) demon-

strates that when VFI decreases below 80%, the Seye 

value drops below 6.0, which correlates with an in-

creased risk of visual field loss and progression of 

glaucomatous damage. 

These results indicate that Seye can serve as an 

auxiliary parameter in primary screening, helping to 

identify patients requiring further ophthalmological 

evaluation. 

One of the advantages of the model is its ability to 

simulate the progression of eye conditions over time. 

By analyzing changes in Seye trends, it is possible to 

estimate how soon a patient may transition from a bor-

derline condition to a pathological state. 

A predictive analysis was performed by modeling 

Seye changes over a 5-year period, assuming a gradual 

increase in IOP and a decline in VFI due to age-related 

changes. The results suggest the following trends  

(Table 3). 

Table 3. Prognostic Assessment of Eye Condition 

Source: compiled by the authors 

If a patient's Seye drops by more than 0.5 units 
per year, it may indicate a need for preventive 
measures (e.g., IOP control therapy, retinal perfusion 
enhancement). 
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Conclusion on Diagnostic and Prognostic Appli-

cations 
These findings demonstrate that Seye values are 

not only reflective of the current eye condition but also 
predictive of disease progression. The model can po-

tentially be used: 
- for early detection of ocular conditions, particular-

ly glaucoma risk assessment; 

- for monitoring patients over time, identifying those 
who may require intervention; 

- for ai-based decision support, by integrating histor-

ical patient data for personalized risk assessment. 

To validate the program's functionality and ensure 

accurate calculations, modular tests were conducted, cov-

ering various scenarios of input changes. Particular focus 

was placed on sensitivity analysis, including the influence 

of parameters such as eye shape and retinal light sensitivi-

ty. The unittest module from Python's standard library 

was employed for this purpose.  

To check the functions calculate_Seye and its other 
key components the model functioning was tested. The 

following input parameters were used in testing. The in-

put parameters are shown in Table 4.  

Table 4. Input parameters 

Source: compiled by the authors 

The tests confirm that: 

- the model correctly processes different sets of pa-

rameters; 

- generation of random data corresponds to the spec-

ified ranges; 

- coefficient optimisation works correctly within the 

constraints. 

This analysis helped identify vulnerabilities and en-

hance the algorithm's robustness. 

Accuracy was verified using both quantitative meth-

ods, by comparing results with expected values, and 

qualitative methods, by assessing alignment with theoreti-

cal expectations.  

Additionally, scenarios resembling real-world medi-

cal practices were tested, ensuring the model's predictive 
accuracy and practical value for medical and technologi-

cal applications. 

Example Test Using the unittest Library: 
import unittest 
from seye_model import calculate_Seye, gener-

ate_random_params, optimize_coefficients 
class TestSeyeModel(unittest.TestCase): 
    def test_random_param_generation(self): 
        params = generate_random_params() 
        self.assertTrue(5 <= params["IOP"] <= 60) 
        self.assertTrue(0 <= params["VFI"] <= 100) 
        self.assertTrue(0.5 <= params["RQ"] <= 9) 
        self.assertTrue(0 <= params["BCVA"] <= 1.0) 
        self.assertTrue(0 <= params["Tr"] <= 1.0) 
        self.assertTrue(50 <= params["Pperf"] <= 

120) 
        self.assertTrue(0 <= params["alpha"] <= 1.0) 
        self.assertTrue(1 <= params["age"] <= 100) 

    def test_coefficient_optimization(self): 
        params = { 
          "IOP": 18, 
          "VFI": 80, 
          "RQ": 4, 
          "BCVA": 0.9, 
          "Tr": 0.4, 
          "Pperf": 70, 
          "alpha": 0.7, 
          "age": 35, 
          "additional_factor": 1.1, 
        } 
        target_Seye = 95 
        optimized_k = optimize_coefficients(params, 

target_Seye) 
        self.assertTrue(all(0.1 <= k <= 0.5 for k in op-

timized_k)) 
    def test_calculate_Seye(self): 
        params = { 
            "IOP": 15, 
            "VFI": 90, 
            "RQ": 5, 
            "BCVA": 0.8, 
            "Tr": 0.3, 
            "Pperf": 60, 
            "alpha": 0.6, 
            "age": 40, 
            "additional_factor": 1.2, 
        } 
        coefficients = [0.3] * 9 
        result = calculate_Seye(params, coefficients) 
        self.assertAlmostEqual(result, 85.0, delta=5.0) 
if __name__ == "__main__": 
    unittest.main() 
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This test module verifies: 

 correct parameter generation within defined rang-

es; 

 optimization results that adhere to the defined co-

efficient constraints; 

 Seye calculations align with expected outcomes 

based on predefined parameters and coefficients. 

Figure 5 shows a comparison of forecasting errors 
for the linear model and the proposed nonlinear model 

optimized using the L-BFGS-B method.  

The error histogram indicates that the nonlinear 

model exhibits a smaller spread of errors, as confirmed by 

the following quality metrics. 

 Linear Regression: MSE = 0.226, MAE = 0.392, 

R² = 0.984. 

 Nonlinear Model (L-BFGS-B): MSE = 0.212, 

MAE = 0.375, R² = 0.985. 

Fig.5. Сomparison of the forecasting errors for 

the linear and proposed nonlinear models 
Source: compiled by the authors 

The error histogram indicates that the nonlinear 

model exhibits a smaller spread of errors, as confirmed 

by the following quality metrics. 

 Linear Regression: MSE = 0.226, MAE = 

0.392, R² = 0.984. 

 Nonlinear Model (L-BFGS-B): MSE = 0.212, 

MAE = 0.375, R² = 0.985. 

Despite the slight differences in numerical values, 

using the nonlinear model allows for a more precise 

consideration of the complex interrelationships among 

the eye parameters, making it more robust to variations 

in the input data. 

1. Optimization of the weighting coefficients in 

the nonlinear model reduces both the mean squared 

error (MSE) and the mean absolute error (MAE) com-

pared to the linear model. 

2. The error histogram shows that the nonlinear 

model has a smaller spread of predictions, which 

makes it more stable. 

3. The coefficient of determination (R²) indicates 

that both models describe the data well, although the 

nonlinear approach provides a slight advantage in ac-

curacy. 

4. This result confirms the rationale for using 

nonlinear relationships and adaptive optimization of 

model parameters for more accurate diagnosis and 

forecasting of the eye’s condition. 

Thus, the proposed model with L-BFGS-B opti-

mization ensures higher accuracy and better adaptation 

to the individual characteristics of the patient. 

Table 5 presents a comparative performance evaluation 

of different models in forecasting the condition of the 

eyes. The proposed Seye model demonstrates superior 

accuracy, achieving the lowest values for MSE and 

MAE while maintaining the highest R² value, which 

indicates its superior predictive capability. 

Table 5. Performance metrics comparison of dif-

ferent models  

Source: compiled by the authors 

Data Analysis 

 The Seye model exhibits minimal errors (MSE 

and MAE), indicating high forecasting accuracy. 

 A high R² = 0.95 confirms that the model ex-

plains the variability of the data well. 

 Linear regression and traditional methods per-

form less effectively in accounting for nonlinear rela-

tionships. 

 The basic neural network also performs well, 

but Seye is optimized for this task, giving it a distinct 

advantage. 

3. DISCUSSION OF RESULTS 

The developed Seye model is a comprehensive 

adaptive system that integrates key ophthalmological 

parameters and considers their nonlinear interactions, 

ensuring high diagnostic and prognostic accuracy.  

Unlike traditional approaches, the model com-

bines parameters such as intraocular pressure (IOP), 

blood flow (Q), visual field index (VFI), perfusion 

pressure (Pperf), and others, enabling a deeper analysis 

of physiological changes in the eye. 

One of the key distinguishing features of the 

model is its ability to account for nonlinear dependen-

cies.  

Unlike existing solutions that predominantly rely 

on linear approximations, the proposed model incorpo-

rates exponential, logarithmic, and polynomial func-

tions, allowing for a more precise representation of 

biophysical processes - for example, the effects of age, 

perfusion changes, and ocular thermoregulation. 
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The analysis of Seye values shows that certain 

ranges correspond to different eye conditions, making 

the model potentially useful for preliminary diagnos-

tics. 

 Seye > 7.5 – corresponds to a healthy eye con-

dition without significant pathological changes. 

 6.0 ≤ Seye ≤ 7.5 – indicates a borderline state 

where early functional changes may occur, requiring 

further monitoring. 

 Seye < 6.0 – suggests a high risk of pathologi-

cal conditions such as perfusion impairments or glau-

coma progression, necessitating detailed examination. 

This classification enables the model to be used 

for initial screening and risk assessment, with the po-

tential for further refinement based on clinical data. By 

employing L-BFGS-B optimization for weight coeffi-

cients, it ensures automatic parameter selection tailored 

to individual patient profiles, enhancing predictive ac-

curacy. 

A key strength of the model is its adaptability. 

Beyond standard ophthalmological parameters, it in-

corporates external influences such as stress, lifestyle, 

and comorbidities, broadening its applicability. This 

comprehensive approach supports personalized diag-

nostics and treatment while improving the interpreta-

bility of results across various clinical scenarios. 

Furthermore, the proposed model has high inte-

gration potential with artificial intelligence and can be 

used in clinical decision support systems, automating 

the diagnostic and disease prediction processes. Its ap-

plications extend beyond ophthalmology to predictive 

analytics, paving the way for early pathology detection 

and dynamic eye condition monitoring. 

Additional capabilities of the model include inte-

gration with VR/AR technologies, enabling visualiza-

tion of ocular parameter changes, making diagnostics 

more intuitive and comprehensible for both doctors and 

patients.  

Moreover, the developed system can be linked to 

laser and pharmacological therapies, allowing for real-

time dynamic assessment of treatment effectiveness 

and adjustments. 

Thus, the scientific novelty of this research lies in 

the development of a comprehensive nonlinear model 

of eye condition, optimized using the           L-BFGS-B 

method, incorporating external factor influences, and 

demonstrating a high potential for integration with 

modern digital technologies.  

This makes it more accurate, adaptive, and appli-

cable in clinical practice, opening new horizons in oph-

thalmological diagnostics, prognosis, and personalized 

treatment. 

The model’s ability to track Seye changes over 

time suggests potential applications in early diagnosis 

and disease progression monitoring.  

Future research should focus on validating these 

findings with clinical data to refine diagnostic thresh-

olds and improve predictive accuracy.  

The classification of Seye values provides a po-

tential basis for automated screening and risk assess-

ment. Further studies will refine these thresholds, im-

proving their applicability in personalized diagnostics 

and disease monitoring. 

CONCLUSIONS 

The developed Seye model successfully addresses 

the outlined research objectives.  

It describes the state of the eye based on key oph-

thalmological parameters, enabling precise diagnosis 

and prognosis while considering nonlinear interactions. 

Comprehensive modeling: The model integrates 

structural and functional eye characteristics, improving 

sensitivity to physiological and environmental changes. 

Analysis of complex dependencies: The model ef-

fectively captures nonlinear relationships, increasing its 

applicability to real-world clinical cases. 

Optimized parameter selection: The L-BFGS-B 

optimization method enhances predictive accuracy by 

fine-tuning weight coefficients. 

Personalization and adaptability: The model ac-

counts for individual patient characteristics, allowing 

tailored diagnostics and treatment plans. 

The results confirm that the Seye model outper-

forms both traditional statistical methods and baseline 

machine learning approaches, proving its effectiveness 

in modeling complex ophthalmological dependencies 

Practical integration and future prospects: 

AI-driven flexibility – the model can be integrated 

into intelligent decision-support systems for personal-

ized medical assessments. 

VR/AR visualization – Enhancing data interpreta-

tion for both physicians and patients. 

Real-time treatment evaluation – Assessing the ef-

fectiveness of laser and pharmacological therapy dy-

namically. 

Predictive and preventive capabilities – Identify-

ing risk factors to mitigate complications before they 

arise. 

In summary, the Seye model not only provides an 

advanced analysis of the eye’s condition but also 

serves as a foundation for intelligent, adaptive 

healthcare solutions, significantly improving diagnostic 

precision and treatment effectiveness. 
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АНОТАЦІЯ 

Математичні моделі людського ока слугують адаптивним інструментом для аналізу та прогнозування 
офтальмологічних параметрів з урахуванням їх взаємозв'язків та індивідуальних особливостей пацієнта. Їх застосування в 
офтальмології підвищує якість діагностики, моніторингу та лікування, що в кінцевому підсумку покращує якість життя 
пацієнтів. В основі розробленої моделі стану очей лежить математична функція, яка інтегрує фізіологічні параметри ока, 
кожному з яких присвоєно ваговий коефіцієнт для визначення його впливу на загальний показник стану. Модель враховує 
складні нелінійні взаємодії між параметрами, що дозволяє більш точно відображати фізіологічні процеси. Для оптимізації 

вагових коефіцієнтів використовується метод L-BFGS-B - ітераційний алгоритм, який ефективно мінімізує функцію втрат і 
забезпечує високу точність адаптації моделі до індивідуальних даних пацієнта. Ця модель має кілька переваг: вона дозволяє 
проводити ранню діагностику таких захворювань, як глаукома, катаракта і макулодистрофія, розробляти плани лікування на 
основі індивідуальних параметрів пацієнта, а також полегшує моніторинг захворювання і прогнозування прогресування для 
своєчасного коригування терапії. Крім того, модель може бути інтегрована з сучасними технологіями, включаючи системи 
віртуальної та доповненої реальності, а також штучний інтелект для автоматизованої діагностики. Таким чином, 
запропонована математична модель слугує універсальним інструментом для аналізу стану очей та розробки інноваційних 
діагностичних і терапевтичних технологій. Враховуючи взаємозалежності параметрів та їх вплив на фізіологічний стан ока, 
вона надає офтальмологам потужний інструмент для покращення діагностики, прогнозування та моніторингу захворювань у 

сфері охорони зору. 
Ключові слова: око людини; математичне моделювання; інтегральний показник; нелінійні залежності; методи 

оптимізації; адаптивність; моніторинг; прогнозування 
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