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ABSTRACT 

The development of software engineering poses a challenge for researchers to maintain the integrity of models stored 
simultaneously in a lightweight text format and in a formally rich metadata view. The existence of two views ensures broad 
compatibility with developer tools and accurate reproduction of semantics, but creates the risk of discrepancies between structural 
and behavioral descriptions. The relevance of the research is determined by the need for methods that prevent the accumulation of 
contradictions without significantly affecting the speed of design iterations. The aim of this work is to provide a theoretical 
justification for an incremental approach that can guarantee the consistency of a metamodel with two views during any successive 
changes. To achieve this goal, a generalized metamodel has been formed that distinguishes between a structural view for static 

entities and a behavioral view for dynamic aspects. A correspondence relationship has been introduced between views, which 
describes pairs of equivalent elements and sets rules for their mutual consistency. The set of rules is formalized in the language of 
object invariants. Incrementalism is ensured by localizing changes: after editing, only those fragments that are directly involved in 
the modification are checked, so that the time spent remains proportional to the volume of the updated part. The result of applying the 
method is to prove the correctness of the proposed restrictions, which excludes the possibility of inconsistent model states. An 
analytical assessment of the complexity of the procedure confirms a linear dependence on the number of changed elements, which 
indicates the suitability of the approach for industrial-scale models. A demonstration control example, built on a representative 
domain, showed that the method detects inconsistency immediately after a single edit and proposes a sequence of actions sufficient to 
eliminate it without involving outside expertise. As a result, the work proposes a new formal methodology for maintaining 

consistency between views of a single model, which comprehensively combines localized verification with a declarative description 
of dependencies. The practical significance is manifested in the reduction of error correction costs, increased reliability of 
documentation, and the ability to integrate the method into modern modeling and continuous development environments, making it a 
promising tool for the development and maintenance of large corporate systems. 

Keywords: Model consistency; incremental verification; model synchronization; metamodel; ontological constraints, 
reliability. 
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INTRODUCTION 

Modern software projects require effective 

approaches to system modeling due to their 

increased complexity and distribution. The Unified 

Modeling Language (UML) is one of the most 

common tools for formalizing requirements and 

designing software architecture [1]. As the scale of 

models grows, the question of optimal storage of 

UML descriptions and their integration with various 

development tools arises. The standard model 

exchange format is XML Metadata Interchange 

(XMI), the official notation of the Object 

Management Group for serializing UML data. The 

XMI format provides full detail of elements in 

accordance with the UML 2.5.1 specification [2], 

but is known for its complexity and redundant  
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syntax. Instead, JavaScript Object Notation (JSON) 

is a lightweight text data format that is increasingly 

being used to store models due to its compact syntax 

and ease of use in data exchange, including in 

version control systems. However, the direct 

application of JSON to UML models is complicated 

by the need to display complex structure and 

relationships, which is well supported by XMI. 

Neither of these formats provides a one-size-fits-all 

solution: XMI guarantees formal precision [3], and 

JSON guarantees integration flexibility, so the 

search for combined approaches is relevant in the 

field of modeling. In particular, a previous work 

proposed a UML model representation based on a 

combination of JSON and XMI formats [4]. This 

model provides for storing the basic structures of the 

model (classes, attributes, relationships) in the form 

of JSON, and complex behavioral diagrams in the 

form of nested XMI fragments. 
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To prevent out-of-sync between both views, a 

consistency checking (validation) system was 

provided. In general, the detailed scheme is shown 

in Fig. 1. 
For the purposes of this study, the reliability of 

a UML model is interpreted as its ability to maintain 

internal integrity, logical consistency, and 
predictable behavior throughout its life cycle, in 

particular in cases of unforeseen changes to 

structural components (classes, attributes, 
relationships) and/or behavioral aspects (state 

diagrams, activities, sequences, etc.), gradual 

expansion of functionality, or migration of the 

model between tools. A reliable model localizes and 
timely signals any inconsistencies between views, 

preventing them from escalating into cascading 

errors, which ensures that defects can be quickly 
eliminated without compromising overall 

consistency. Thus, the model acts as the only 

reliable source of architectural information and 

minimizes labor costs for finding and synchronizing 
hidden discrepancies. 

The issue of maintaining model consistency 

between the two views is relevant because 
identifying and eliminating inconsistencies between 

different model representations is vital to preventing 

errors and software defects that may be caused by 
inconsistencies between UML diagrams or their 

parts [5]. Existing studies propose numerous 

consistency rules for specific types of UML 

diagrams, but the problem of ensuring consistency 

and interconnection between these diagrams within a 

single model remains open [5]. This is especially 

true for incremental (step-by-step) changes when the 
model evolves and it is necessary to guarantee its 

integrity without full verification each time [6]. In 

traditional tools, consistency control is mostly 
limited to a single environment or type of artifact 

[7]. For example, UML model checking tools 

usually assess consistency only between diagrams 
within a model or between model and code, but do 

not cover different representation formats of the 

same model. Therefore, it is hypothesized that the 

use of formal validation methods will allow 
maintaining the consistency of UML model with two 

views by combining the advantages of XMI and 

JSON. The research hypothesis is that the use of 
formal verification (in particular, Object Constraint 

Language (OCL) constraints and SAT solvers) to 

verify the two views of the model will ensure timely 

detection of inconsistencies and prevent out-of-sync 
without significant performance impact. The 

verification should be performed incrementally, with 

each model change, which will maintain the 
integrity of the system in real time. Accordingly, the 

relevance of the work is due to the practical need to 

accelerate development and reduce the risks 
associated with incomplete or inconsistent UML 

models in the project documentation in the context 

of rapid development iterations. 

 

Fig. 1. Architectural model of the system 
Source: compiled by the [4] 
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ANALYSIS OF THE LITERATURE AND 

PROBLEM STATEMENT 

The problem of software model consistency is 

widely covered in the literature. There are different 
types of consistency of UML models: internal 

(between elements of the same diagram), inter-

diagram (between different types of diagrams, such 
as classes and states), model-code, etc. In the context 

of Model-Driven Engineering (MDE) [8], many 

techniques have been developed to ensure the 
consistency of artifacts. Systematic reviews confirm 

that violation of consistency between diagrams is a 

common phenomenon that negatively affects the 

quality of models, in particular, [9] draws attention 
to the lack of researchers' attention to inter-diagram 

and semantic consistency: existing methods mainly 

cover syntactic aspects and individual notations, 
without ensuring full consistency of complex 

models. For example, a study has shown that when 

moving to short Continuous Integration/Continuous 

Delivery (CI/CD) iterations, most existing modeling 
tools do not provide adequate consistency control, 

and therefore automated methods remain critical 

[10]. In [11], the literature was systematically 
analyzed and more than 100 rules for the 

consistency of UML diagrams were identified, of 

which 52 were later recognized as mandatory for all 
UML models [12]. These rules include checking the 

correctness of the relationships between classes and 

objects in different diagrams, the correspondence 

between state and sequence diagrams, etc. 
Subsequently, the same authors applied the selected 

rules to analyze open UML models in practice [13], 

confirming that rule violations often occur even in 
professionally developed models. Other researchers 

also emphasize that inconsistencies in UML models 

are common and require automatic control [5]. A 
review of approaches to checking the consistency of 

behavioral models was conducted and it was 

concluded that despite the large number of proposed 

rules, methods for their practical implementation are 
not sufficiently developed [5], [14]. An example of 

an integrated approach to automated detection of 

deficiencies in UML class models is described in 
[15]. 

One of the key areas of research is consistency 

between different types of models. A systematic 

review of this modeling has shown the lack of 
common terminology and standard solutions to 

maintain consistency between different types of 

artifacts [16]. We also consider the Vitruvius 
approach, which introduces a single base model 

from which various system representations are 

projected. Such a projection architecture allows to 

automatically synchronize changes in all related 

model views by formally defining the concept of 

consistency between them [17]. This increases 

consistency in view-based development, as all 
partial views of the system remain tied to a common 

source of truth. Thus, maintaining model 

consistency remains an urgent scientific task. 
Another aspect of consistency is managing 

consistency across large models and integrating 

tools. XMI, as a standard format for saving UML 
models, guarantees compatibility with various 

Computer-Aided Software Engineering (CASE) 

tools, but is not suitable for manual analysis or quick 

review of changes. In addition, as the size of models 
grows, XMI files become very large and slow to 

process. In response to these challenges, researchers 

are experimenting with alternative ways to store 
models: using JSON, relational and non-relational 

(NoSQL) databases, graph repositories, etc. For 

example, a multi-database model storage system 

NeoEMF has been developed that supports several 
NoSQL storages (graph, column, key-value) instead 

of the standard XMI [18]. Experimental results 

showed a significant increase in the performance of 
queries to large models: in some scenarios, 

accessing model elements through the NeoEMF 

graph database was faster, while a similar operation 
with XMI space required downloading the entire file 

and did not fit into memory. Thus, the use of flexible 

storage formats (such as JSON or graph databases) 

in combination with a formal metamodel allows for 
increased scalability of MDE solutions. At the same 

time, this creates a new challenge - to maintain 

consistency between different formats of 
representation of the same model. Existing works 

only partially address this issue: for example, OGC 

Best Practice 2018 describes the rules for encoding 
UML metamodels into JSON schemas, but they do 

not regulate the consistency of changes between 

JSON and XMI representations of the model. There 

are also several tool solutions (EMF JSON, 
MongoEMF, etc.) that allow you to synchronously 

save a model in two formats, but the consistency 

control is up to the developers. 
An important aspect is model merging and 

conflict management when combining different 

fragments. In team projects, it is often necessary to 

merge changes made by several developers in 
parallel or to integrate different partial models 

(versions) into a single system model. This task is 

accompanied by consistency conflicts when the 
merged changes are incompatible. A recent mapping 

study, which covered 105 scientific papers, 

systematized techniques for detecting and resolving 
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conflicts in model merging [19]. According to its 

results, the most common approaches to detecting 

conflicts are based on violation of holistic 

constraints, overlapping changes, or change patterns 
(patterns). At the same time, there is a lack of 

integrated tools to fully support this process in 

practice. Thus, manual intervention by experts is 
often required to achieve post-merger consistency, 

which slows down development. There are proposals 

in the literature to increase the level of automation of 
this process through artificial intelligence. For 

example, reinforcement learning algorithms have 

been experimentally applied to automatically select 

conflict resolution actions in UML class diagrams 
after version merging [20]. In their approach, the 

artificial intelligence agent learns from examples of 

successful resolution of typical conflicts and 
suggests the optimal sequence of corrections, 

personalized to specific model quality indicators. 

Despite the promise of such solutions, they are still 

at the research stage and are not integrated into 
standard MDE tools. 

Existing model checking tools and frameworks 

provide validation mainly within a homogeneous 
representation. Some works have proposed to 

transform state diagrams into formal models (e.g., 

Petri nets or first-order logic) to verify the 
compatibility of behavioral diagrams. To verify the 

behavioral aspects, it was proposed to translate 

UML State Machine into colored Petri nets using the 

Isabelle/HOL validator, which allowed to formally 
prove the properties of states [21]. An alternative 

way to formalize statechart diagrams through 

temporal Petri nets is described in [22], where the 
focus is on reproducing the time constraints of 

transitions. Additionally, a method for building a 

model of a computing process based on a Petri net is 
proposed in [23], which confirms the effectiveness 

of this formalism for the early detection of structural 

errors and loops. In addition, 84 coevolution patterns 

were proposed, which use colored Petri nets to 
incrementally track changes in classes, objects, 

activities, states, and sequences, localizing the 

impact and quickly identifying potential 
discrepancies between diagrams [24]. We should 

also mention the areas devoted to incremental model 

consistency checking. Traditional validation tools 

perform a global model check after making changes, 
which can be slow and inconvenient. In addition, it 

is known that repeated full validation of a large 

UML model after each change is a computationally 
expensive task [6]. Instead, modern approaches seek 

to provide live validation, i.e., immediate detection 

of inconsistencies in the process of model editing. 

For example, [25] proposed an incremental 

algorithm for checking OCL constraints in a UML 

model by automatically converting them into SQL 

queries. This approach localizes the verification only 
to the elements that have changed, which 

significantly reduces the time for detecting errors 

compared to a complete re-check of the entire 
model. 

Formal specification and verification methods 

are also widely used to ensure model consistency. 
The basic mechanism is the imposition of formal 

constraints (invariants), for example, in the OCL 

language, followed by verification of their 

fulfillment. A number of tools (e.g., UML USE, etc.) 
allow you to identify logical contradictions between 

model elements based on OCL rules. However, 

formal verification can go beyond OCL: the 
literature describes approaches to translate 

UML/OCL models into formal problem statements 

that can be solved automatically. Thus, in [26], it 

was proposed to display UML state diagrams 
together with OCL constraints in the Web Ontology 

Language (OWL) to check their consistency by 

means of logical inference in the descriptive logic 
environment. Automatic OWL analysis allows you 

to detect contradictions between requirements and 

model elements, generating a logical explanation for 
each conflict. Another direction is the use of 

SAT/SMT solvers and algebraic methods: the study 

[27] presented a formal consistency model based on 

graphs and structure-data descriptions that provides 
both consistency checking and consistency 

preservation during model evolution. Their proposed 

system of formal rules allows both to detect all 
integrity violations in multi-species UML models 

and to automatically maintain consistency when 

updating (by propagating changes or calling repair 
operations). A special mention should be made of 

[28], where the combination of triple graph 

grammars with linear integer programming 

guarantees finding a consistent transformation 
between two models and demonstrates scalability for 

industrial scenarios. The application of strict formal 

constraints increases the reliability of validation: the 
researchers emphasize that without such a 

framework, most existing methods do not guarantee 

the full correctness of models. 

The analysis of modern CASE tools shows that 
although they declare full support for UML 2.x, 

none of them eliminates the key discrepancy 

between the static description of "what is" and the 
behavioral description of "what the system does": 

structural and behavioral artifacts are stored in 

different formats or proprietary repositories and are 



Komleva N. O., Nikitchenko M. I.       /      Applied Aspects of Information Technology  

                                                                                   2025; Vol.8 No.2: 162–177 

166      

 

Computer science and software engineering ISSN 2617-4316 (Print) 

ISSN 2663-7723 (Online) 
 

only partially or not formally checked for 

compliance [29]. This is one of the main arguments 

for the need for a metamodel with two views. 

Thus, the analysis of the literature shows that 
there is a significant body of work in the field of 

ensuring the consistency of UML models and their 

validation by formal methods. Previous work has 
focused either on the consistency of different 

diagrams within an XMI model, or on the 

consistency of the model with code, or on general 
rules for UML notation. Nevertheless, the analysis 

of modern CASE tools shows that the lack of 

guaranteed, automated, and efficient mechanisms for 

maintaining consistency between the structural and 
behavioral views of a UML model in a collaborative 

development environment leads to architectural 

drift, an increase in the number of defects, and 
significant overhead in the project. The criticality of 

this problem is that inconsistency errors are hidden 

failures. These are not syntax errors that can be 

detected by a compiler or schema validator, but 
semantic gaps that manifest themselves at later 

stages of the life cycle: during code generation, 

integration testing, or, worst of all, already in 
operation. For example, calling a non-existent 

method in a sequence diagram or using outdated 

data types may go unnoticed at the modeling stage, 
but will lead to a system failure. The cost of fixing 

such defects at later stages is higher than at the 

design stage, making the problem of ensuring 

consistency not just a quality issue, but a key factor 
in the cost-effectiveness of development. Recent 

formal works, such as [30], offer a theoretical 

framework for managing consistency between 
multiple models, but do not consider combined data 

formats. 

In general, modern UML modeling tools have 
to combine opposing requirements: on the one hand, 

quick introduction of small changes to the static 

structure of the model, on the other hand, formal 

accuracy and completeness of behavior description. 
The serialization formats that prevail in practice 

provide these advantages separately. JSON 

demonstrates compact syntax, fast processing, and 
easy integration with version control systems, so it is 

naturally suited for storing flat hierarchies such as 

class or component diagrams, where relationships 

such as owns, typedBy, or associates are easily 
expressed through nested objects and simple 

references. 

However, attempting to transfer the dynamic 
aspects of UML to the same format encounters a 

number of fundamental obstacles. First, JSON does 

not have a built-in system of global unique 

identifiers and links between elements; therefore, the 

order of messages in interaction diagrams or the 

chain of transitions in state machines has to be 

reproduced with artificial markers, which quickly 
reduces the transparency of the model. Secondly, 

behavioral constructs like CombinedFragment, 

ExecutionSpecification, or SignalEvent are recursive 
in nature and require many levels of nesting; in 

JSON, this turns into a deep tree with dozens of 

duplicate identifiers - unlike XMI, where such 
references are automatically handled by the 

xmi:id/xmi:idref mechanism. 

A comparative assessment of the description 

volume confirms the gap in complexity: even with a 
complete list of relationship attributes, the static part 

in JSON takes up an order of magnitude less space 

and requires only schema validation, while for 
behavioral diagrams the number of contextual 

dependencies and nesting depth increases 

dramatically and requires an external logic engine to 

check for correctness. Therefore, in a pure JSON 
format, the model either loses its semantics or grows 

into an overloaded, hard-to-manage document. 

At the same time, switching to a solid XMI, on 
the contrary, would complicate every small 

structural change. For example, for a typical 

"rename attribute" operation, the JSON fragment 
takes one or two lines, while the XMI fragment is 

much larger and includes service xmlns links, which 

creates unnecessary conflicts during a three-way 

merge. Git's text tools automatically and correctly 
merge such compact changes, so most everyday 

structural changes don't require the participation of 

an XMI expert. 
Practice shows that a deliberate division into 

two views is optimal. The structure (classes, 

attributes, associations) is stored in a compact JSON 
segment, which is faster and requires less memory, 

is easily merged into Git, and allows developers to 

make common edits without diving into the formal 

XMI syntax. Instead, the behavior (strategic 
scenarios, states, message sequences) is captured in 

XMI fragments: this is where full compliance with 

the UML 2.5 specification, the ability to impose 
OCL constraints, and compatibility with an existing 

UML toolchain are required. The combined 

approach combines the strengths of both formats and 

focuses on the boundary where most critical 
inconsistencies between structure and behavior 

occur. 

Accordingly, this paper aims to develop a 
formal framework for a UML model with two views 

and tools for its practical implementation that will 

ensure constant consistency between JSON and XMI 
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parts. This continues and deepens the author's 

previous research [4], focusing not only on the 

architecture itself, but also on its validation 

algorithms. 

PURPOSE AND OBJECTIVES OF THE 

STUDY 

The aim of the paper is to formally guarantee 
the integral consistency of two views of a UML 

model using JSON and XMI by introducing a 

verifiable set of consistency rules and an incremental 
procedure for their verification. To achieve this goal, 

it is necessary to solve the following tasks: to 

formally define a metamodel with two views, 

consisting of a set of JSON elements and a set of 
XMI elements linked by a correspondence relation; 

to formulate a set of consistency constraints between 

these sets (in OCL or first-order logic) and transform 
them into formats suitable for automated verification 

(Alloy); to develop a method for incremental 

verification of model consistency with favorable 

computational complexity and to test it. These tasks 
will allow us to confirm or refute the hypothesis 

about the effectiveness of formal validation of UML 

models with two views. 

STRUCTURAL ORGANIZATION OF THE 

PROPOSED METAMODEL WITH TWO 

VIEWS 

According to the multi-level architecture of the 

Meta Object Facility (MOF), the development of a 

metamodel (level M2) is necessary because it 

defines the formal abstract syntax and semantics for 
a set of specific UML models (level M1), ensuring 

their homogeneity and the possibility of automated 

processing [31]. The metamodel defines the 
permissible types of elements, their attributes, 

relations, and OCL invariants, i.e., it acts as a 

"system of rules" by which models of the subject 
area are built and verified. Only a well-defined 

metamodel makes it possible to integrate different 

view formats (JSON/XMI) within a single formal 

space and guarantee the correctness of 
transformations between them. In addition, the 

metamodel serves as a contract for MDE tools: it 

connects to Eclipse Modeling Framework (EMF)-
like frameworks and provides code generation, 

serialization, incremental validation, and further 

extension without breaking compatibility. That is 

why, in the context of the proposed approach, it is 
quite justified to talk about developing a metamodel 

rather than a separate UML model, since only a 

metamodel provides the necessary level of 
abstraction, formality, and reusability inherent in the 

MOF specification. 

It is also known that there are architectural 

models with more views. The presence of only two 

views – structural and behavioral – is the result of a 

deliberate engineering compromise based on the 
fundamental distinction between "what the system 

is" and "what it does". It is at the interface between 

these two aspects that the vast majority of critical 
inconsistencies (signature mismatches, call errors, 

etc.) occur, so concentrated efforts to ensure their 

consistency have the greatest practical effect. In 
addition, each of these views requires different 

approaches to storage and validation: JSON provides 

flexible, Version Control System (VCS)-oriented 

management of frequent, small structure changes, 
while XMI provides formal rigor and OCL 

compatibility for complex behavioral logic. 

Additionally, it can be noted that the proposed two-
layer strategy does not contradict the classical 4 +1 

(Kruchten) model [32], but only specifies it in terms 

of persistence: the logical view is stored in JSON, 

and the process view in XMI; the remaining views 
(development, physical, scenarios) either indirectly 

rely on this data or can be integrated without 

breaking the chosen segregation. Therefore, limiting 
to two views is a deliberate choice that minimizes 

complexity and focuses on the problem of 

consistency between the static and dynamic aspects 
of the system. 

A UML metamodel with two views is a formal 

representation of the UML 2.5 metamodel, which 

consists of a triple according to formula (1): 

𝑀 = (𝑀𝑆, 𝑀𝐵, μ), (1) 

where MS is the structural view of the metamodel 

(the JSON view), MB is the behavioral view of the 
metamodel (the XMI view) and μ is the 

correspondence relation between the elements of 

these two views. Intuitively, MS defines all valid 

entities and relationships of the static structure of the 
UML model (classes, attributes, associations, etc.), 

MB defines all entities for describing behavior 

(activities, states, message sequences, etc.), and μ 
captures how objects of the structural view 

correspond to objects of the behavioral view. The 

metamodel was built according to the UML 2.5 
specification, taking into account standard 

abstractions (e.g., class Class, association 

Association, state State, transition Transition, 

message Message, etc.) and using the division of the 
model into two views. 

Entities and relations of the structural view 

MS. The structural view of the metamodel describes 
the elements of UML structure diagrams. The main 

entities are classes (Class metaclass), attributes 
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(Property), operations (Operation), and associations 

(Association). Typical UML relationships are 

defined between these entities: a class has attributes 

and operations (aggregation/composition between 
Class and Property/Operation), an attribute has a 

type (a reference to a Class or a primitive), an 

operation can have parameters (each of which is an 
attribute specially marked as a parameter), an 

association connects two classes, etc. An entity is 

considered relevant for behavioral synchronization if 
the hasBehavior attribute= is set to true. 

Formally, the structural view can be described 

as follows: 

𝑀𝑆  = < 𝑇𝑆 , 𝑅𝑠 >,  (2) 

where: TS = {Class, Interface, Primitive, 

Enumeration, Attribute, Operation, Parameter, 

Association, AssociationEnd, Generalization, 
Package}; RS = {owns, typedBy, hasParameter, 

associates, generalizes}. 

Thus, TS is the set of types that can make up a 

structural view. And RS is the set of relations or 
functions between elements from ES that specify 

their interconnections. For example, typedBy: 

Attribute → (Class ∪ Primitive). 

Entities and relations of the behavioral view 

MB. The behavioral view of the metamodel 

describes the elements of UML dynamic diagrams 

that are stored in the format of XMI fragments [33]. 
The main meta- entities are activity diagrams 

(Activity metaclass), state diagrams (StateMachine 

and related State, Transition metaclasses) – define 
possible object states and transitions between them 

when events occur, sequence diagrams (Interaction 

and Lifeline, Message, ExecutionSpecification 
metaclasses, etc.) – model the exchange of messages 

between objects (class instances) in time, events and 

calls (SignalEvent, CallEvent, Action, etc.). These 

MB elements have their own relationships: for 
example, a sequence diagram contains Lifelines, 

each Lifeline can refer to a specific class (through 

the represents or classifier property), a Message is 
associated with an operation call (through a 

reference to the corresponding Operation), a 

Transition in a state diagram can have a trigger that 
corresponds to an operation call event or a signal 

receipt, an Action in an activity can call a class 

operation or change an attribute value, etc. 

In addition, the model stipulates that each class, 
attribute, or operation has a unique global ID and 

name (unique within its entity). This ensures that all 

references to the same element are associated with 
the same record at the structural view, which 

guarantees consistency: for example, if the Book 

class is renamed, the change will automatically 

propagate to all relevant XMI fragments via a single 

ID. 

Formally, the behavioral view can be described 
as follows: 

𝑀𝐵  = < 𝑇𝐵 , 𝑅𝐵 >,  (3) 

where TB = {Activity, Action, ControlFlow, 
StateMachine, State, Transition, Event, Interaction, 

Lifeline, Message, ExecutionSpecification, 

CombinedFragment}, RB = {contains, triggers, 

represents, calls}. 
Similarly to the structural view, TB is the set of 

types that a behavioral view can consist of. RB is the 

set of relations or functions between elements in EB 
that define their interconnections. 

If necessary, both views can be extended with 

new types and new relationships.  
The μ- correspondence relation (μ) reflects the 

agreement between the elements of the structural 

and behavioral views of the model. In general, 

𝜇 ⊆  𝐸𝑆 ×  𝐸𝐵,  (4) 

where: ES is set of all structural view elements 

(instances of MS), а EB is the set of all elements of 

the behavioral view (instances MB). The tuple  

(s,b)∈μ means that the behavioral element b 

corresponds to (or is bound to) the structural element 

s. 

For example: (C,A)∈μ can mean that activity 
diagram A belongs to class C (the diagram models 

the behavior associated with this class); (s, l)∈μ 

indicates that lifeline l is an instance of class s (i.e., 

classRef(l)=s); (o, m)∈μ means that message m 

models the call to operation o (formally, 

m.name=o.name and opRef(m)=o). Thus, μ covers 

all the necessary types of relationships between 
structural and behavioral elements. 

If we think of μ as a relation, we can say that 

the following conditions are satisfied. 

1. Identification linkage. In each pair (s, b) ∈ μ, 

one element directly refers to the id of the other, 

which provides unambiguous tracing between views. 

2. Totality with respect to structure. Every 
structural element that is marked as 

hasBehavior=true and for which behavioral 

granularity is possible has at least one 

correspondence b∈EB. 

3. Partiality in relation to behavior. Any 

behavioral fragment must have a structural anchor. 

Formally: ∀b∈EB, ∃s∈ES : (s,b)∈μ. 

4. Non-functionality ES!→!EB and functionality 

vice versa. One structural element can have several 

behavioral correspondences, while each behavioral 
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element has a single structural anchor. Formally: 

∀b∈EB, ∃!s∈ES : (s,b)∈μ. 

To formally guarantee the consistency of the 

model, we introduce a system of ontological 

constraints on the relation µ. Here, ontology is a set 

of object types, their properties, and relationships (in 

the form of logical statements or OCL invariants) 
that determines when a model is considered 

consistent. In other words, it is a set of consistency 

rules. Formally, these rules can be specified as 

logical formulas (e.g., first-order) or as OCL 
constraints that must be satisfied on any instance of 

the model M. 

Here are the key limitations of consistency. 
Completeness of correspondences: For every 

relevant structural element, there must be a 

corresponding behavioral element. By "relevant" we 
mean one that is explicitly marked with the 

hasBehavior attribute= true (in this case, it is 

considered dynamic). For other operations (e.g., 

getters/setters, DTO-class service methods, factory 
constructors, etc.), behavioral support is not 

mandatory, so a violation of the rule is not recorded 

by the OCL invariant as follows: 
 

context Class 

inv BehaviorExists: 

  self.operations->exists(op | 

op.hasBehavior) implies 

    (Interaction.allInstances()->exists(i | 

        i.messages->exists(m | m.name = 

op.name)) or 

     StateMachine.allInstances()->exists(sm 

| 

        sm.transitions->exists(t | 

t.trigger.operation = op)) or 

     Activity.allInstances()->exists(act | 

        act.actions->exists(a | a.operation 

= op))) 

 

This formulation creates a one-way 

relationship: the behavioral view is based on the 

structural view, but not vice versa. A class without 
designated dynamic operations can remain purely 

structural, which is consistent with the principle 

“structure is primary, behavior is derived”. 

This selective rather than total requirement has 
two advantages. Firstly, it avoids false warnings for 

“passive” classes, such as Enumeration, where 

behavior is not required. Secondly, it allows you to 
gradually develop the model: first, set the structure, 

and then, as needed, specify the behavior without 

breaking consistency. If a stricter rule is needed in 
future projects (all operations must be covered by 

test scenarios or animations), it can be formulated as 

an extension of the current invariant, just change the 

hasBehavior predicate to be inclusive. 

Unity of compliance: Any behavioral element 

has a single anchor at the structural view.  

The OCL invariant is as follows: 

 
context BehaviorElement 

inv SingleAnchor: 

  not self.anchor.oclIsUndefined() 

 

Compatibility of types and parameters: 

Object types and call signatures must match between 

views.  
The OCL invariant is as follows: 

 
context Message 

inv SignatureMatches: 

  not self.opRef.oclIsUndefined() implies 

    self.arguments->size() = 

self.opRef.parameters->size() and 

    self.arguments->forAll(arg | 

      let idx : Integer = self.arguments-

>indexOf(arg) in 

        

arg.type.conformsTo(self.opRef.parameters-

>at(idx).type)) 

 

No dangling references: No behavioral 
fragment should refer to a structural element that 

does not exist, and vice versa – a structural element 

cannot have references to non-existent behavioral 

fragments.  
The OCL invariant is as follows: 

 
context BehaviorElement 

inv AnchorExists: 

  StructuralElement.allInstances() 

->includes(self.anchor) 

 

context Class 

inv ActivityReferenceValid: 

  not self.activityRef.oclIsUndefined() 

implies 

     Activity.allInstances() 

->exists(act | act.id = self.activityRef) 

 

To formally guarantee consistency between the 
structural and behavioral views of the model, the 

following key invariants are defined: 

BehaviorExists (invariant of completeness of 
correspondences). 

Guarantees that each dynamic structural-view 

operation (hasBehavior attribute = true) has at least 

one behavioral implementation. 
Formally: 

∀𝑠 ∈ 𝐸𝑆, 𝑠. hasBehavior = true ⇒

∃𝑏 ∈ 𝐸𝐵: (𝑠, 𝑏) ∈ μ.
 (5) 

AnchorExists (invariant of no dangling 
references). 
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Requires each behavioral element to have at 

least one structural anchor. 

Formally: 

∀𝑏 ∈ 𝐸𝐵, ∃𝑠 ∈ 𝐸𝑆: (𝑠, 𝑏) ∈ μ. (6) 

SingleAnchor (invariant of unity of 

compliance). 

Prohibits multiple bindings of one behavioral 
element to several structural elements, requiring 

only one anchor. 

Formally: 

∀𝑏 ∈ 𝐸𝐵, ∃! 𝑠 ∈ 𝐸𝑆: (𝑠, 𝑏) ∈ μ. (7) 

SignatureMatches (signature matching 

invariant). 

Ensures that signatures match the definition of 
operations at the structural view and their calls in 

behavioral diagrams. 

Formally: 

∀𝑚 ∈ Message, 𝑚. opRef ≠ undefined ⇒

SignatureMatches(𝑚).
 (8) 

These invariants are an integral part of the 

formal model and are used to check consistency 

when making changes to the model. 
The metamodel and the correspondence relation 

µ are implemented in such a way that all the above 

constraints can be set declaratively. For this purpose, 

OCL invariants were used to describe the 

consistency rules and their subsequent formal 

verification by means of Alloy. It is known that 

Alloy is a language and tool for analyzing structures 

based on the Boolean formulae feasibility problem 

(SAT) [34], [35]. Each constraint is represented as 

an Alloy-assertion, and the sets ES and EB are the 

signatures of an Alloy model. The relation μ is 

described through a binary relational attribute 

between two signatures. For example, the rule 

"Unity of compliance". In Alloy, it is expressed by a 

quantifier formula on the set of model facts. If a 

constraint is violated, Alloy finds a counterexample 

– a specific set of objects s, b that does not meet the 

requirement. This allows you to localize the 

inconsistency. It should be noted that using the SAT 

method requires limiting the search area (model 

scopes), but in our case, the scopes correspond to the 

actual number of elements in the model, which is 

known and relatively small, which corresponds to 

the practical performance limit of Alloy 4.2; for 

models > 5000 elements, it is advisable to use a 

sharding strategy or SAT accelerator. Thus, the 

formal consistency rules have been transformed into 

a form suitable for automatic verification by 

SAT/Alloy. It is also worth noting that the current 

translation covers a subset of OCL (without 

collect/select on nested collections); operators 

outside the subset are marked as not-supported and 

require manual reformulation. For a detailed 

overview of the syntax and expressive capabilities of 

OCL, on which these rules are based, see [36]. 

For example, “Unity of compliance” can be 

represented as follows: 

 
-- declaration of basic signatures 

sig StructuralElement {} 

 

sig BehaviorElement { 

  -- each behavioral element has exactly 

ONE anchor structure 

  anchor: one StructuralElement 

} 

 

This approach combines the clarity of the 

specification at the UML metamodel level (via 

OCL) with the rigor of the logical analysis offered 

by Alloy (the SAT solver checks whether constraints 

are met on all possible combinations of elements 

within the specified limits). 

Preserving the order and UML profile 

extensions is planned in separate map-tables; in this 

article, we limit ourselves to the basic elements of 

the UML 2.5 specification. 

A METHOD FOR CHECKING THE 

CONSISTENCY OF MODELS WITH TWO VIEWS 

The proposed method is based on a formal 

UML metamodel with two views [1]. The method is 

focused on incremental localized consistency 

checking, which ensures guaranteed consistency of 

the model during its gradual modification. 

Let's define the stages of the method. 

1. Change detection and model view 

identification  

A change is identified as being related to one of 

the metamodel views, MS or MB. This is determined 

based on the structure of the identifiers or the editing 

context. According to the structure of the sets ES 

(instances of MS) and EB (instances of MB), 

determines which of the subsets has changed and 

localizes the corresponding subgraph in the 

correspondence graph μ⊂ES×EB. 

2. Synchronization when changing the 

structural view (JSON → XMI)  

If a structural element is changed, the method 

performs a direct check and synchronization of the 

impact on the behavioral view.  

Consider the subcases. 
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2.1. Adding a structural element  

When adding the element s∈ES, the method 
checks whether the rule of completeness of 

correspondence is fulfilled: 

∀𝑠 ∈ 𝐸𝑆, 𝑠. hasBehavior = true   ⟹

∃𝑏 ∈ 𝐸𝐵: (𝑠, 𝑏) ∈ μ.
 (9) 

If there is no match, a new behavioral element b 
is created that satisfies the requirement of existence 

in the set EB. This guarantees the fulfillment of the 

OCL invariant BehaviorExists. 

2.2. Deleting a structural element 

For each b that has a relationship (s,b)∈μ, a 

relevance check is performed. If the dependency is 

critical, the element b is removed, otherwise it is 
marked as invalid. This supports the fulfillment of 

the AnchorExists invariant. 

2.3. Modification of a structural element 
The method evaluates which properties of the 

element s have been changed (e.g., type, name, 

attributes) and performs a partial check of the 
corresponding consistency constraints for the 

associated b, such that (s,b)∈μ.  

An example of type compatibility checking for 

operation calls (8). Here, SignatureMatches(m) 
means that: 

 the number of arguments in the message m 

is equal to the number of parameters of the 
corresponding operation; 

 the type of each argument corresponds to or 

is compatible with the type of the corresponding 

parameter of this operation. 
This ensures that the SignatureMatches 

invariant is respected for parameter types and calls. 

3. Synchronization when changing the 

behavioral view (XMI → JSON) 

3.1. Adding a behavioral element 

For each new b∈EB, the method sets the anchor 

s∈ES in accordance with the requirements of the 
SingleAnchor invariant, according to (7). 

If there is no anchor, a proposal is generated to 

create or bind the corresponding element at the 
structural view. 

3.2. Deleting a behavioral element 

It checks whether there are any structural 
elements that depend solely on the removed 

behavioral element. The presence of such elements 

may indicate the formation of invalid structural 

fragments. 

3.3. Modifying a behavioral element 

A localized check of the compatibility of 

parameters, types, and correspondences between 
views is performed. In case of inconsistencies, 

recommendations or suggestions for automatic 

correction are generated. 

4. Localized verification of OCL invariants 

After synchronization operations, including 
possible automatic corrections, the method checks 

the consistency of the model by applying OCL 

invariants. The check is not performed for the entire 
model, but only for the set of Affected Elements – 

elements that are directly or indirectly related to the 

changed element through the correspondence 
relation μ and other structural and behavioral 

dependencies. This approach significantly reduces 

the scope of verification and computational costs by 

limiting the analysis to only relevant parts of the 
model. 

Each OCL invariant is local in nature and is 

checked based on data about adjacent model 
elements (for example, class invariants are checked 

by their attributes and relationships, message 

invariants are checked by related operations and 

parameters). If all the invariants are met for the 
elements of the Affected Elements set, the change is 

considered accepted, and the model returns to the 

consistent state. If at least one of the invariants is 
violated, the algorithm records the conflict and 

generates a corresponding message for the user. 

5. Conflict handling and notifications 
If any residual conflicts are detected, the system 

immediately alerts the user in real time. The conflict 

message contains a description of the problem (for 

example, “The message calls an operation that does 
not exist” or “The argument type does not match the 

type of the operation parameter”) and suggests 

possible steps to resolve it: “Create an operation 
with this signature in the class”, “Change the 

argument type to the correct one”, or “Delete the 

duplicate class”. The user can choose one of the 
proposed options, after which the system 

automatically makes the appropriate changes to the 

model. After that, the invariants are rechecked, and 

if the conflict is resolved, the message disappears. 
If automatic conflict resolution is not possible 

(for example, when duplicated classes have 

significant differences and it is impossible to 
determine which one should be left), the system 

records the problem and passes it on to the model 

engineer for consideration. 

The following notations are used in the 
following: N is the total number of elements of the 

UML model; k is the power of the set of changed 

elements Δ in the current revision, with k≪N; d is 
the maximum number of trace edges μ incident to 

each element. The graph μ is stored in a two-way 
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hash index, which provides access to adjacent 

vertices in O(1). 

The incremental algorithm performs for each 

si∈Δ a recheck of only local invariants, and also 
extends the result to the dependent behavioral 

element bj, the number of which is limited to d. 

Thus, the total number of elementary operations 

does not exceed k⋅d, and if d is constant (sparse trace 

graph), the asymptotic is O(k). 

Theorem 1. Let Δ be the set of changed 

elements of the UML model, ∣Δ∣=k, and d be the 
upper bound on the degree of each vertex in the 

trace graph μ. Then the running time of the 

incremental consistency procedure satisfies the 

estimate T(k)=O(k⋅d). 

Proof. For each element si of the set Δ, no more 

than d local invariant checks and one status 

propagation operation to the corresponding bj are 
performed. Since all auxiliary structures (indexes, 

caches) provide O(1) access, the total complexity 

does not exceed k⋅d; hence, T(k) = O(k⋅d). 
It follows from the above that when k=1, the 

amortized complexity of a single event approaches 

O(1), while in general it grows linearly with the 
number of changes. A full model check covering all 

N elements requires O(N⋅d) steps and serves as a 

baseline for comparison. 

For a scenario where the entire UML model is 
stored only in XMI format, localized incremental 

verification covers one representation, and its time is 

denoted as T1(k)=O(k·d). In the dual JSON and XMI 
view, verification consists of three sequential 

operations: (i) structural view validation, (ii) 

behavioral view validation, and (iii) verification of 

μ-relations between views. The first two operations 
have the same upper bound of O(k·d), while the third 

has O(k), since the μ relation is supported by a 

bidirectional hash index with O(1) access. 
Therefore, T2(k)=O(k·d+k) = O(k·d). 

As a result, the presence of two formats does 

not change the order of complexity compared to the 
single-format XMI model; the difference is limited 

to a constant multiplicative overhead that does not 

affect the scalability of the method. 

Conflict handling mechanisms. The method’s 
policy is to automate the correction as much as 

possible, but retain control over the model by the 

user. If the detected conflict is unambiguously 
resolvable according to the business logic (for 

example, a duplicate record – you can delete one; a 

renamed class – you should rename it in all 

diagrams), the tool applies the fix itself and only 
notifies you of it. In subtler cases, the user is given a 

choice. For example, when two duplicate entities are 

found, the system can offer to merge them, keep one 

(and which one), or keep both, but then you need to 

manually distinguish them (rename or clarify). The 

system traces all changes, so the history of edits is 
saved (you can cancel the automatic correction if it 

turned out to be undesirable). 

REFERENCE EXAMPLE 

To verify the performance of the proposed 

model and method, a simplified demonstration 

example is considered. The scenario is a UML 
model of the conditional subject area “Smart Home 

– Device”, presented at two views in accordance 

with the developed metamodel. 

At the structural view, the model includes two 
classes. The first of them is SmartHome, which 

describes a smart home object with an address 

attribute of type String, a collection of devices, and a 
toggleAll() operation. The second class is Device, 

which represents an individual device; it has the id 

(string identifier) and status (boolean flag on/off) 

attributes, as well as the toggleStatus() operation, 
which is marked as dynamic (the hasBehavior 

attribute is = true). 

At the behavioral view, the model captures a 
minimal set of dynamic scenarios, with all key 

elements tied to structural identifiers. For the Device 

class, a DeviceLifecycle state diagram was created 
that models switching between the Idle and Active 

states. For the SmartHome class, there is a ToggleAll 

sequence diagram in which the SmartHome object 

sends toggleStatus() messages to all devices. The 
correspondence relation μ matches the identifiers of 

the model elements: SmartHome has identifiers J1 

(structural view) and X1 (behavioral view), Device 
has J2 and X2, and the status attribute has J3 and X3. 

In the initial state, the model is consistent: each 

structural element has a single behavioral 
counterpart, and all operation signatures are 

consistent across views. 

To simulate the real situation of model editing, 

two typical out-of-synchronization typical of 
complex systems are deliberately introduced. After 

that, we demonstrate the application of the 

developed method of incremental consistency 
checking, which allows to automatically detect and 

eliminate such violations. 

Below is a sequence of steps that illustrates the 

application of the methodology using a benchmark 
example. 

1. Change Δ1. The developer adds a new 

dynamic operation checkBattery() to the Device 

class: int, which receives the JcheckBattery 

identifier. However, at the behavioral view, the 
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corresponding diagram or action that implements 

this operation is not created. This leads to a violation 

of the BehaviorExists invariant, which requires that 

each dynamic operation has at least one mapping in 
the behavioral model. The proposed method 

automatically detects a change in a structural 

element, identifies the absence of a corresponding 
behavioral fragment through the correspondence 

relation μ, and then initiates the auto-

synchronization process. A new action-call 
checkBattery() is created in the DeviceLifecycle 

state diagram, assigned the identifier 

XcheckBattery, and a pair (JcheckBattery, 

XcheckBattery) is added to the μ relationship. After 
that, the BehaviorExists invariant is executed, and 

the model returns to the consistent state. 

2. Application of the method after Δ1. The 
incremental mechanism detects the change of the 

JcheckBattery element at the structural view, 

analyzes the set of correspondences in the relation μ 

and detects the absence of the corresponding 
behavioral element. The method activates the 

autosynchronization procedure and creates the 

missing fragment in the behavioral view, which 
ensures the fulfillment of the formal constraint 

BehaviorExists. As a result, full correspondence 

between structural and behavioral elements for the 
added operation is achieved without involving 

additional expertise. 

3. Change Δ2. The project developer makes 

changes to the ToggleAll behavior diagram and adds 

the newState: Boolean parameter to the 
toggleStatus() message. At the structural view, the 

toggleStatus() operation description remains 

parameterless, which violates the SignatureMatches 
invariant, which requires full signature matching 

between operation definitions and corresponding 

messages in diagrams. As a result, there is a 

discrepancy between the parameter sets that needs to 
be eliminated. 

4. Using the method after Δ2. The method 

detects a change in the behavioral fragment Xmsg 

that describes the toggleStatus() message. The 
structural operation JtoggleStatus is found through 

the correspondence relation μ, after which the 

parameter lists are compared. If a discrepancy is 
found, the method activates the correction 

procedure: in the Device class, the newState: 

Boolean parameter is added to the toggleStatus() 

operation. After updating the signature, the 

SignatureMatches invariant is executed again, and 

the model returns to the consistent state. 

Consistency control. After both scenarios are 
completed, the model is re-validated to ensure that 

all key invariants are met: BehaviorExists, 

SignatureMatches, and SingleAnchor. Localized 

verification reveals the absence of dangling links, 

and all structural and behavioral elements have 
correct correspondences in terms of μ. Analytical 

evaluation confirms that, compared to a full O(N ⋅ d) 

check for monolithic XMI, the incremental approach 

reduces complexity to O(k ⋅ d), where k is the 

number of changed elements, which allows for 

effective consistency maintenance even in industrial-

scale models. 

DISCUSSION OF THE RESULTS 

The literature analysis and practical experience 

of using UML in large teams show that the most 
common consistency issues arise when different 

types of diagrams are edited: renamed or omitted 

methods, mismatched operation signatures, duplicate 
elements in several packages, etc. Without automatic 

control, such errors accumulate and become 

noticeable only at the later stages of development 

(code generation, integration testing), which 
significantly increases the cost of corrections. 

The proposed model with two views, combined 

with formal consistency constraints, potentially 
allows detecting such discrepancies at early stages of 

modeling. It is assumed that incremental validation 

will run in the background and provide the 

developer with immediate feedback, minimizing the 
impact on the workflow. The formal definition of 

rules eliminates the risks of subjective interpretation 

of the validation, ensuring the unambiguity of the 
results. This increases the reliability of project 

documentation – consistency is maintained 

automatically and continuously, so the risk of 
defects due to out-of-sync diagrams is significantly 

reduced. 

The scientific novelty of the work is that for the 

first time a metamodel and method for ensuring the 
consistency of UML descriptions in the two views 

using JSON and XMI formats are formally defined. 

Unlike previous attempts to implement similar 
models, where synchronization between formats is 

outlined only conceptually, this study proposes a 

clear algorithmic verification mechanism that acts as 
a "converter-controller" between two model views. 

The theoretical analysis and case study confirmed 

that such integration combines the advantages of 

both formats, allowing the development team to use 
convenient modeling tools without fear of losing 

data accuracy or consistency. The previous UML 

consistency rules (e.g., matching state diagrams with 
class diagrams, checking the integrity of 

requirements and design models, etc.) take on a new 
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dimension in our metamodel – they can be applied in 

the context of multiple description formats. 

The limitation of this method is the need to 

initially identify the corresponding elements 
between the existing JSON and XMI descriptions. 

Another direction of development is to expand the 

set of consistency checks: for example, controlling 
the consistency between the model and the code. It 

is also planned to integrate the prototype system into 

a development environment for further empirical 
evaluation on industrial cases. In general, the results 

of the study demonstrate the high efficiency of the 

formal method for maintaining model consistency. 

The proposed metamodel and method have 
significant potential to improve the quality and 

reliability of software projects without significantly 

complicating development processes. 
Further research involves empirically testing 

these findings on real projects and quantifying the 

performance of incremental validation. 

CONCLUSIONS 

The article presents a formal metamodel and 

method for ensuring the consistency of a UML 

model that is simultaneously stored in JSON and 
XMI formats. A metamodel with two views, with a 

clear correspondence relation between elements of 

different views and a system of formal constraints 
(OCL → Alloy) describing the necessary conditions 

for their consistency is developed. Based on this 

model, an incremental method of ensuring 

consistency is proposed that automatically tracks 
changes and synchronizes both views of the UML 

model. The scientific novelty of the obtained results 

lies in the combination of flexible JSON and strict 
XMI through a single formalized mechanism, taking 

into account the properties of OCL constraints and 

the capabilities of SAT analysis, which allows 

maintaining the integrity of the model in real time. It 

is shown that the application of this approach allows 

to use the strengths of each of the presented formats, 
while, thanks to the method of ensuring consistency, 

potential errors are detected at early stages and do 

not accumulate, resulting in a reduction in the 
complexity of corrections in the later phases of the 

software life cycle and, in general, full consistency 

between different views is achieved. The proposed 
methodology extends the early work on the 

described format [4] and lays the groundwork for the 

practical use of JSON and XMI formats within the 

same model without the risk of out-of-sync. 
Quantitative evaluation confirmed that the transition 

from full validation O(N⋅d) to incremental O(k⋅d) 

reduces the complexity of consistency checking by 

an order of magnitude for a typical ratio of k ≪ N. 

The risk factors include the scalability of Alloy 

analysis for models > 5000 elements, incomplete 

coverage of OCL operators, and the need to integrate 
the change log and 3-way-merge into the IDE; these 

aspects will be the focus of future research. 

The implementation of the validator 

prototype is promising 
In the next work, we plan to implement a 

prototype validator in Python using the PyEcore 

library and the Alloy SAT solver. It is expected to 
support full and incremental verification modes, 

integration with popular IDEs and collection of 

static performance statistics. The scalability of the 
Alloy solver and full integration with the IDE API 

remain critical success factors, which will be the 

subject of further work. Experimental evaluation on 
real projects should confirm the effectiveness and 

scalability of the proposed solution. 
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АНОТАЦІЯ 

Розвиток програмної інженерії ставить перед дослідниками завдання підтримувати цілісність моделей, що 

зберігаються одночасно у легкому текстовому та у формально насиченому метаданому поданні. Наявність двох 
представлень забезпечує широку сумісність з інструментами розробників і точне відтворення семантики, проте породжує 
ризик розбіжностей між структурним і поведінковим описами. Актуальність дослідження визначається потребою в методах, 
які унеможливлюють накопичення суперечностей без суттєвого впливу на швидкість ітерацій проектування. Метою роботи 
є теоретичне обґрунтування інкрементального підходу, здатного гарантувати узгодженість метамоделі з двома поданнями 
під час будь-яких послідовних змін. Для досягнення цієї мети сформовано узагальнену метамодель, що виокремлює 
структурне подання для статичних сутностей і поведінкове подання для динамічних аспектів. Між поданнями запроваджено 
відношення відповідності, яке описує пари еквівалентних елементів і задає правила їх взаємної узгодженості. Сукупність 
правил формалізовано мовою об’єктних інваріантів. Інкрементальність забезпечена локалізацією змін: після редагування 

перевіряються лише ті фрагменти, що безпосередньо залучені до модифікації, завдяки чому часові витрати залишаються 
пропорційними обсягу оновленої частини. Наслідком застосування методу є доведення коректності запропонованих 
обмежень, яке виключає можливість виникнення несумісних станів моделі. Аналітична оцінка складності процедури 
підтверджує лінійну залежність від кількості змінених елементів, що свідчить про придатність підходу для промислових 
розмірів моделей. Демонстраційний контрольний приклад, побудований на репрезентативному домені, засвідчив, що метод 
виявляє інконсистентність одразу після одиночної правки та пропонує послідовність дій, достатню для її усунення без 
залучення сторонньої експертизи. У підсумку робота пропонує нову формальну методику підтримки узгодженості між 
поданнями однієї моделі, яка комплексно поєднує локалізовану перевірку з декларативним описом залежностей. Практична 

значущість проявляється у зменшенні витрат на виправлення помилок, підвищенні надійності документації та можливості 
інтегрувати метод у сучасні середовища моделювання і безперервної розробки, що робить його перспективним 
інструментом при розробці та супроводу великих корпоративних систем.. 

Ключові слова: Узгодженість моделей; інкрементальна перевірка; синхронізація моделей; метамодель; онто-логічні 
обмеження, надійність 
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