
Komleva N. O., Nikitchenko M. I. / Applied Aspects of Information Technology

 2025; Vol.8 No.2: 162–177

162

Computer science and software engineering ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

DOI: https://doi.org/10.15276/aait.08.2025.11

UDС: 004.421.2:004.415.5

Method for incremental control of consistency between structural and

behavioral views of software architecture

Nataliia O. Komleva
1)

ORCID: https://orcid.org/0000-0001-9627-8530; komleva@op.edu.ua. Scopus Author ID: 57191858904

Maksym I. Nikitchenko
1)

ORCID: https://orcid.org/0009-0007-9560-7057; maksym.nikitchenko@gmail.com
1) Odesa National Polytechnic University, 1, Shevchenko Ave. Odesa, 65044, Ukraine

ABSTRACT

The development of software engineering poses a challenge for researchers to maintain the integrity of models stored
simultaneously in a lightweight text format and in a formally rich metadata view. The existence of two views ensures broad
compatibility with developer tools and accurate reproduction of semantics, but creates the risk of discrepancies between structural
and behavioral descriptions. The relevance of the research is determined by the need for methods that prevent the accumulation of
contradictions without significantly affecting the speed of design iterations. The aim of this work is to provide a theoretical
justification for an incremental approach that can guarantee the consistency of a metamodel with two views during any successive
changes. To achieve this goal, a generalized metamodel has been formed that distinguishes between a structural view for static

entities and a behavioral view for dynamic aspects. A correspondence relationship has been introduced between views, which
describes pairs of equivalent elements and sets rules for their mutual consistency. The set of rules is formalized in the language of
object invariants. Incrementalism is ensured by localizing changes: after editing, only those fragments that are directly involved in
the modification are checked, so that the time spent remains proportional to the volume of the updated part. The result of applying the
method is to prove the correctness of the proposed restrictions, which excludes the possibility of inconsistent model states. An
analytical assessment of the complexity of the procedure confirms a linear dependence on the number of changed elements, which
indicates the suitability of the approach for industrial-scale models. A demonstration control example, built on a representative
domain, showed that the method detects inconsistency immediately after a single edit and proposes a sequence of actions sufficient to
eliminate it without involving outside expertise. As a result, the work proposes a new formal methodology for maintaining

consistency between views of a single model, which comprehensively combines localized verification with a declarative description
of dependencies. The practical significance is manifested in the reduction of error correction costs, increased reliability of
documentation, and the ability to integrate the method into modern modeling and continuous development environments, making it a
promising tool for the development and maintenance of large corporate systems.

Keywords: Model consistency; incremental verification; model synchronization; metamodel; ontological constraints,
reliability.

For citation: Komleva N. O., Nikitchenko M. I. “Method for incremental control of consistency between structural and behavioral views of

software architecture”. Applied Aspects of Information Technology. 2025; Vol. 8 No. 2: 162–177. DOI: https://doi.org/10.15276/aait.08.2025.11

INTRODUCTION

Modern software projects require effective

approaches to system modeling due to their

increased complexity and distribution. The Unified

Modeling Language (UML) is one of the most

common tools for formalizing requirements and

designing software architecture [1]. As the scale of

models grows, the question of optimal storage of

UML descriptions and their integration with various

development tools arises. The standard model

exchange format is XML Metadata Interchange

(XMI), the official notation of the Object

Management Group for serializing UML data. The

XMI format provides full detail of elements in

accordance with the UML 2.5.1 specification [2],

but is known for its complexity and redundant

© Komleva N., Nikitchenko M., 2025

syntax. Instead, JavaScript Object Notation (JSON)

is a lightweight text data format that is increasingly

being used to store models due to its compact syntax

and ease of use in data exchange, including in

version control systems. However, the direct

application of JSON to UML models is complicated

by the need to display complex structure and

relationships, which is well supported by XMI.

Neither of these formats provides a one-size-fits-all

solution: XMI guarantees formal precision [3], and

JSON guarantees integration flexibility, so the

search for combined approaches is relevant in the

field of modeling. In particular, a previous work

proposed a UML model representation based on a

combination of JSON and XMI formats [4]. This

model provides for storing the basic structures of the

model (classes, attributes, relationships) in the form

of JSON, and complex behavioral diagrams in the

form of nested XMI fragments.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0 /deed.uk)

https://doi.org/10.15276/aait

Komleva N. O., Nikitchenko M. I. / Applied Aspects of Information Technology

 2025; Vol.8 No.2: 162–177

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer science and software engineering 163

To prevent out-of-sync between both views, a

consistency checking (validation) system was

provided. In general, the detailed scheme is shown

in Fig. 1.
For the purposes of this study, the reliability of

a UML model is interpreted as its ability to maintain

internal integrity, logical consistency, and
predictable behavior throughout its life cycle, in

particular in cases of unforeseen changes to

structural components (classes, attributes,
relationships) and/or behavioral aspects (state

diagrams, activities, sequences, etc.), gradual

expansion of functionality, or migration of the

model between tools. A reliable model localizes and
timely signals any inconsistencies between views,

preventing them from escalating into cascading

errors, which ensures that defects can be quickly
eliminated without compromising overall

consistency. Thus, the model acts as the only

reliable source of architectural information and

minimizes labor costs for finding and synchronizing
hidden discrepancies.

The issue of maintaining model consistency

between the two views is relevant because
identifying and eliminating inconsistencies between

different model representations is vital to preventing

errors and software defects that may be caused by
inconsistencies between UML diagrams or their

parts [5]. Existing studies propose numerous

consistency rules for specific types of UML

diagrams, but the problem of ensuring consistency

and interconnection between these diagrams within a

single model remains open [5]. This is especially

true for incremental (step-by-step) changes when the
model evolves and it is necessary to guarantee its

integrity without full verification each time [6]. In

traditional tools, consistency control is mostly
limited to a single environment or type of artifact

[7]. For example, UML model checking tools

usually assess consistency only between diagrams
within a model or between model and code, but do

not cover different representation formats of the

same model. Therefore, it is hypothesized that the

use of formal validation methods will allow
maintaining the consistency of UML model with two

views by combining the advantages of XMI and

JSON. The research hypothesis is that the use of
formal verification (in particular, Object Constraint

Language (OCL) constraints and SAT solvers) to

verify the two views of the model will ensure timely

detection of inconsistencies and prevent out-of-sync
without significant performance impact. The

verification should be performed incrementally, with

each model change, which will maintain the
integrity of the system in real time. Accordingly, the

relevance of the work is due to the practical need to

accelerate development and reduce the risks
associated with incomplete or inconsistent UML

models in the project documentation in the context

of rapid development iterations.

Fig. 1. Architectural model of the system
Source: compiled by the [4]

Komleva N. O., Nikitchenko M. I. / Applied Aspects of Information Technology

 2025; Vol.8 No.2: 162–177

164

Computer science and software engineering ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

ANALYSIS OF THE LITERATURE AND

PROBLEM STATEMENT

The problem of software model consistency is

widely covered in the literature. There are different
types of consistency of UML models: internal

(between elements of the same diagram), inter-

diagram (between different types of diagrams, such
as classes and states), model-code, etc. In the context

of Model-Driven Engineering (MDE) [8], many

techniques have been developed to ensure the
consistency of artifacts. Systematic reviews confirm

that violation of consistency between diagrams is a

common phenomenon that negatively affects the

quality of models, in particular, [9] draws attention
to the lack of researchers' attention to inter-diagram

and semantic consistency: existing methods mainly

cover syntactic aspects and individual notations,
without ensuring full consistency of complex

models. For example, a study has shown that when

moving to short Continuous Integration/Continuous

Delivery (CI/CD) iterations, most existing modeling
tools do not provide adequate consistency control,

and therefore automated methods remain critical

[10]. In [11], the literature was systematically
analyzed and more than 100 rules for the

consistency of UML diagrams were identified, of

which 52 were later recognized as mandatory for all
UML models [12]. These rules include checking the

correctness of the relationships between classes and

objects in different diagrams, the correspondence

between state and sequence diagrams, etc.
Subsequently, the same authors applied the selected

rules to analyze open UML models in practice [13],

confirming that rule violations often occur even in
professionally developed models. Other researchers

also emphasize that inconsistencies in UML models

are common and require automatic control [5]. A
review of approaches to checking the consistency of

behavioral models was conducted and it was

concluded that despite the large number of proposed

rules, methods for their practical implementation are
not sufficiently developed [5], [14]. An example of

an integrated approach to automated detection of

deficiencies in UML class models is described in
[15].

One of the key areas of research is consistency

between different types of models. A systematic

review of this modeling has shown the lack of
common terminology and standard solutions to

maintain consistency between different types of

artifacts [16]. We also consider the Vitruvius
approach, which introduces a single base model

from which various system representations are

projected. Such a projection architecture allows to

automatically synchronize changes in all related

model views by formally defining the concept of

consistency between them [17]. This increases

consistency in view-based development, as all
partial views of the system remain tied to a common

source of truth. Thus, maintaining model

consistency remains an urgent scientific task.
Another aspect of consistency is managing

consistency across large models and integrating

tools. XMI, as a standard format for saving UML
models, guarantees compatibility with various

Computer-Aided Software Engineering (CASE)

tools, but is not suitable for manual analysis or quick

review of changes. In addition, as the size of models
grows, XMI files become very large and slow to

process. In response to these challenges, researchers

are experimenting with alternative ways to store
models: using JSON, relational and non-relational

(NoSQL) databases, graph repositories, etc. For

example, a multi-database model storage system

NeoEMF has been developed that supports several
NoSQL storages (graph, column, key-value) instead

of the standard XMI [18]. Experimental results

showed a significant increase in the performance of
queries to large models: in some scenarios,

accessing model elements through the NeoEMF

graph database was faster, while a similar operation
with XMI space required downloading the entire file

and did not fit into memory. Thus, the use of flexible

storage formats (such as JSON or graph databases)

in combination with a formal metamodel allows for
increased scalability of MDE solutions. At the same

time, this creates a new challenge - to maintain

consistency between different formats of
representation of the same model. Existing works

only partially address this issue: for example, OGC

Best Practice 2018 describes the rules for encoding
UML metamodels into JSON schemas, but they do

not regulate the consistency of changes between

JSON and XMI representations of the model. There

are also several tool solutions (EMF JSON,
MongoEMF, etc.) that allow you to synchronously

save a model in two formats, but the consistency

control is up to the developers.
An important aspect is model merging and

conflict management when combining different

fragments. In team projects, it is often necessary to

merge changes made by several developers in
parallel or to integrate different partial models

(versions) into a single system model. This task is

accompanied by consistency conflicts when the
merged changes are incompatible. A recent mapping

study, which covered 105 scientific papers,

systematized techniques for detecting and resolving

Komleva N. O., Nikitchenko M. I. / Applied Aspects of Information Technology

 2025; Vol.8 No.2: 162–177

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer science and software engineering 165

conflicts in model merging [19]. According to its

results, the most common approaches to detecting

conflicts are based on violation of holistic

constraints, overlapping changes, or change patterns
(patterns). At the same time, there is a lack of

integrated tools to fully support this process in

practice. Thus, manual intervention by experts is
often required to achieve post-merger consistency,

which slows down development. There are proposals

in the literature to increase the level of automation of
this process through artificial intelligence. For

example, reinforcement learning algorithms have

been experimentally applied to automatically select

conflict resolution actions in UML class diagrams
after version merging [20]. In their approach, the

artificial intelligence agent learns from examples of

successful resolution of typical conflicts and
suggests the optimal sequence of corrections,

personalized to specific model quality indicators.

Despite the promise of such solutions, they are still

at the research stage and are not integrated into
standard MDE tools.

Existing model checking tools and frameworks

provide validation mainly within a homogeneous
representation. Some works have proposed to

transform state diagrams into formal models (e.g.,

Petri nets or first-order logic) to verify the
compatibility of behavioral diagrams. To verify the

behavioral aspects, it was proposed to translate

UML State Machine into colored Petri nets using the

Isabelle/HOL validator, which allowed to formally
prove the properties of states [21]. An alternative

way to formalize statechart diagrams through

temporal Petri nets is described in [22], where the
focus is on reproducing the time constraints of

transitions. Additionally, a method for building a

model of a computing process based on a Petri net is
proposed in [23], which confirms the effectiveness

of this formalism for the early detection of structural

errors and loops. In addition, 84 coevolution patterns

were proposed, which use colored Petri nets to
incrementally track changes in classes, objects,

activities, states, and sequences, localizing the

impact and quickly identifying potential
discrepancies between diagrams [24]. We should

also mention the areas devoted to incremental model

consistency checking. Traditional validation tools

perform a global model check after making changes,
which can be slow and inconvenient. In addition, it

is known that repeated full validation of a large

UML model after each change is a computationally
expensive task [6]. Instead, modern approaches seek

to provide live validation, i.e., immediate detection

of inconsistencies in the process of model editing.

For example, [25] proposed an incremental

algorithm for checking OCL constraints in a UML

model by automatically converting them into SQL

queries. This approach localizes the verification only
to the elements that have changed, which

significantly reduces the time for detecting errors

compared to a complete re-check of the entire
model.

Formal specification and verification methods

are also widely used to ensure model consistency.
The basic mechanism is the imposition of formal

constraints (invariants), for example, in the OCL

language, followed by verification of their

fulfillment. A number of tools (e.g., UML USE, etc.)
allow you to identify logical contradictions between

model elements based on OCL rules. However,

formal verification can go beyond OCL: the
literature describes approaches to translate

UML/OCL models into formal problem statements

that can be solved automatically. Thus, in [26], it

was proposed to display UML state diagrams
together with OCL constraints in the Web Ontology

Language (OWL) to check their consistency by

means of logical inference in the descriptive logic
environment. Automatic OWL analysis allows you

to detect contradictions between requirements and

model elements, generating a logical explanation for
each conflict. Another direction is the use of

SAT/SMT solvers and algebraic methods: the study

[27] presented a formal consistency model based on

graphs and structure-data descriptions that provides
both consistency checking and consistency

preservation during model evolution. Their proposed

system of formal rules allows both to detect all
integrity violations in multi-species UML models

and to automatically maintain consistency when

updating (by propagating changes or calling repair
operations). A special mention should be made of

[28], where the combination of triple graph

grammars with linear integer programming

guarantees finding a consistent transformation
between two models and demonstrates scalability for

industrial scenarios. The application of strict formal

constraints increases the reliability of validation: the
researchers emphasize that without such a

framework, most existing methods do not guarantee

the full correctness of models.

The analysis of modern CASE tools shows that
although they declare full support for UML 2.x,

none of them eliminates the key discrepancy

between the static description of "what is" and the
behavioral description of "what the system does":

structural and behavioral artifacts are stored in

different formats or proprietary repositories and are

Komleva N. O., Nikitchenko M. I. / Applied Aspects of Information Technology

 2025; Vol.8 No.2: 162–177

166

Computer science and software engineering ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

only partially or not formally checked for

compliance [29]. This is one of the main arguments

for the need for a metamodel with two views.

Thus, the analysis of the literature shows that
there is a significant body of work in the field of

ensuring the consistency of UML models and their

validation by formal methods. Previous work has
focused either on the consistency of different

diagrams within an XMI model, or on the

consistency of the model with code, or on general
rules for UML notation. Nevertheless, the analysis

of modern CASE tools shows that the lack of

guaranteed, automated, and efficient mechanisms for

maintaining consistency between the structural and
behavioral views of a UML model in a collaborative

development environment leads to architectural

drift, an increase in the number of defects, and
significant overhead in the project. The criticality of

this problem is that inconsistency errors are hidden

failures. These are not syntax errors that can be

detected by a compiler or schema validator, but
semantic gaps that manifest themselves at later

stages of the life cycle: during code generation,

integration testing, or, worst of all, already in
operation. For example, calling a non-existent

method in a sequence diagram or using outdated

data types may go unnoticed at the modeling stage,
but will lead to a system failure. The cost of fixing

such defects at later stages is higher than at the

design stage, making the problem of ensuring

consistency not just a quality issue, but a key factor
in the cost-effectiveness of development. Recent

formal works, such as [30], offer a theoretical

framework for managing consistency between
multiple models, but do not consider combined data

formats.

In general, modern UML modeling tools have
to combine opposing requirements: on the one hand,

quick introduction of small changes to the static

structure of the model, on the other hand, formal

accuracy and completeness of behavior description.
The serialization formats that prevail in practice

provide these advantages separately. JSON

demonstrates compact syntax, fast processing, and
easy integration with version control systems, so it is

naturally suited for storing flat hierarchies such as

class or component diagrams, where relationships

such as owns, typedBy, or associates are easily
expressed through nested objects and simple

references.

However, attempting to transfer the dynamic
aspects of UML to the same format encounters a

number of fundamental obstacles. First, JSON does

not have a built-in system of global unique

identifiers and links between elements; therefore, the

order of messages in interaction diagrams or the

chain of transitions in state machines has to be

reproduced with artificial markers, which quickly
reduces the transparency of the model. Secondly,

behavioral constructs like CombinedFragment,

ExecutionSpecification, or SignalEvent are recursive
in nature and require many levels of nesting; in

JSON, this turns into a deep tree with dozens of

duplicate identifiers - unlike XMI, where such
references are automatically handled by the

xmi:id/xmi:idref mechanism.

A comparative assessment of the description

volume confirms the gap in complexity: even with a
complete list of relationship attributes, the static part

in JSON takes up an order of magnitude less space

and requires only schema validation, while for
behavioral diagrams the number of contextual

dependencies and nesting depth increases

dramatically and requires an external logic engine to

check for correctness. Therefore, in a pure JSON
format, the model either loses its semantics or grows

into an overloaded, hard-to-manage document.

At the same time, switching to a solid XMI, on
the contrary, would complicate every small

structural change. For example, for a typical

"rename attribute" operation, the JSON fragment
takes one or two lines, while the XMI fragment is

much larger and includes service xmlns links, which

creates unnecessary conflicts during a three-way

merge. Git's text tools automatically and correctly
merge such compact changes, so most everyday

structural changes don't require the participation of

an XMI expert.
Practice shows that a deliberate division into

two views is optimal. The structure (classes,

attributes, associations) is stored in a compact JSON
segment, which is faster and requires less memory,

is easily merged into Git, and allows developers to

make common edits without diving into the formal

XMI syntax. Instead, the behavior (strategic
scenarios, states, message sequences) is captured in

XMI fragments: this is where full compliance with

the UML 2.5 specification, the ability to impose
OCL constraints, and compatibility with an existing

UML toolchain are required. The combined

approach combines the strengths of both formats and

focuses on the boundary where most critical
inconsistencies between structure and behavior

occur.

Accordingly, this paper aims to develop a
formal framework for a UML model with two views

and tools for its practical implementation that will

ensure constant consistency between JSON and XMI

Komleva N. O., Nikitchenko M. I. / Applied Aspects of Information Technology

 2025; Vol.8 No.2: 162–177

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer science and software engineering 167

parts. This continues and deepens the author's

previous research [4], focusing not only on the

architecture itself, but also on its validation

algorithms.

PURPOSE AND OBJECTIVES OF THE

STUDY

The aim of the paper is to formally guarantee
the integral consistency of two views of a UML

model using JSON and XMI by introducing a

verifiable set of consistency rules and an incremental
procedure for their verification. To achieve this goal,

it is necessary to solve the following tasks: to

formally define a metamodel with two views,

consisting of a set of JSON elements and a set of
XMI elements linked by a correspondence relation;

to formulate a set of consistency constraints between

these sets (in OCL or first-order logic) and transform
them into formats suitable for automated verification

(Alloy); to develop a method for incremental

verification of model consistency with favorable

computational complexity and to test it. These tasks
will allow us to confirm or refute the hypothesis

about the effectiveness of formal validation of UML

models with two views.

STRUCTURAL ORGANIZATION OF THE

PROPOSED METAMODEL WITH TWO

VIEWS

According to the multi-level architecture of the

Meta Object Facility (MOF), the development of a

metamodel (level M2) is necessary because it

defines the formal abstract syntax and semantics for
a set of specific UML models (level M1), ensuring

their homogeneity and the possibility of automated

processing [31]. The metamodel defines the
permissible types of elements, their attributes,

relations, and OCL invariants, i.e., it acts as a

"system of rules" by which models of the subject
area are built and verified. Only a well-defined

metamodel makes it possible to integrate different

view formats (JSON/XMI) within a single formal

space and guarantee the correctness of
transformations between them. In addition, the

metamodel serves as a contract for MDE tools: it

connects to Eclipse Modeling Framework (EMF)-
like frameworks and provides code generation,

serialization, incremental validation, and further

extension without breaking compatibility. That is

why, in the context of the proposed approach, it is
quite justified to talk about developing a metamodel

rather than a separate UML model, since only a

metamodel provides the necessary level of
abstraction, formality, and reusability inherent in the

MOF specification.

It is also known that there are architectural

models with more views. The presence of only two

views – structural and behavioral – is the result of a

deliberate engineering compromise based on the
fundamental distinction between "what the system

is" and "what it does". It is at the interface between

these two aspects that the vast majority of critical
inconsistencies (signature mismatches, call errors,

etc.) occur, so concentrated efforts to ensure their

consistency have the greatest practical effect. In
addition, each of these views requires different

approaches to storage and validation: JSON provides

flexible, Version Control System (VCS)-oriented

management of frequent, small structure changes,
while XMI provides formal rigor and OCL

compatibility for complex behavioral logic.

Additionally, it can be noted that the proposed two-
layer strategy does not contradict the classical 4 +1

(Kruchten) model [32], but only specifies it in terms

of persistence: the logical view is stored in JSON,

and the process view in XMI; the remaining views
(development, physical, scenarios) either indirectly

rely on this data or can be integrated without

breaking the chosen segregation. Therefore, limiting
to two views is a deliberate choice that minimizes

complexity and focuses on the problem of

consistency between the static and dynamic aspects
of the system.

A UML metamodel with two views is a formal

representation of the UML 2.5 metamodel, which

consists of a triple according to formula (1):

𝑀 = (𝑀𝑆, 𝑀𝐵, μ), (1)

where MS is the structural view of the metamodel

(the JSON view), MB is the behavioral view of the
metamodel (the XMI view) and μ is the

correspondence relation between the elements of

these two views. Intuitively, MS defines all valid

entities and relationships of the static structure of the
UML model (classes, attributes, associations, etc.),

MB defines all entities for describing behavior

(activities, states, message sequences, etc.), and μ
captures how objects of the structural view

correspond to objects of the behavioral view. The

metamodel was built according to the UML 2.5
specification, taking into account standard

abstractions (e.g., class Class, association

Association, state State, transition Transition,

message Message, etc.) and using the division of the
model into two views.

Entities and relations of the structural view

MS. The structural view of the metamodel describes
the elements of UML structure diagrams. The main

entities are classes (Class metaclass), attributes

Komleva N. O., Nikitchenko M. I. / Applied Aspects of Information Technology

 2025; Vol.8 No.2: 162–177

168

Computer science and software engineering ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

(Property), operations (Operation), and associations

(Association). Typical UML relationships are

defined between these entities: a class has attributes

and operations (aggregation/composition between
Class and Property/Operation), an attribute has a

type (a reference to a Class or a primitive), an

operation can have parameters (each of which is an
attribute specially marked as a parameter), an

association connects two classes, etc. An entity is

considered relevant for behavioral synchronization if
the hasBehavior attribute= is set to true.

Formally, the structural view can be described

as follows:

𝑀𝑆 = < 𝑇𝑆 , 𝑅𝑠 >, (2)

where: TS = {Class, Interface, Primitive,

Enumeration, Attribute, Operation, Parameter,

Association, AssociationEnd, Generalization,
Package}; RS = {owns, typedBy, hasParameter,

associates, generalizes}.

Thus, TS is the set of types that can make up a

structural view. And RS is the set of relations or
functions between elements from ES that specify

their interconnections. For example, typedBy:

Attribute → (Class ∪ Primitive).

Entities and relations of the behavioral view

MB. The behavioral view of the metamodel

describes the elements of UML dynamic diagrams

that are stored in the format of XMI fragments [33].
The main meta- entities are activity diagrams

(Activity metaclass), state diagrams (StateMachine

and related State, Transition metaclasses) – define
possible object states and transitions between them

when events occur, sequence diagrams (Interaction

and Lifeline, Message, ExecutionSpecification
metaclasses, etc.) – model the exchange of messages

between objects (class instances) in time, events and

calls (SignalEvent, CallEvent, Action, etc.). These

MB elements have their own relationships: for
example, a sequence diagram contains Lifelines,

each Lifeline can refer to a specific class (through

the represents or classifier property), a Message is
associated with an operation call (through a

reference to the corresponding Operation), a

Transition in a state diagram can have a trigger that
corresponds to an operation call event or a signal

receipt, an Action in an activity can call a class

operation or change an attribute value, etc.

In addition, the model stipulates that each class,
attribute, or operation has a unique global ID and

name (unique within its entity). This ensures that all

references to the same element are associated with
the same record at the structural view, which

guarantees consistency: for example, if the Book

class is renamed, the change will automatically

propagate to all relevant XMI fragments via a single

ID.

Formally, the behavioral view can be described
as follows:

𝑀𝐵 = < 𝑇𝐵 , 𝑅𝐵 >, (3)

where TB = {Activity, Action, ControlFlow,
StateMachine, State, Transition, Event, Interaction,

Lifeline, Message, ExecutionSpecification,

CombinedFragment}, RB = {contains, triggers,

represents, calls}.
Similarly to the structural view, TB is the set of

types that a behavioral view can consist of. RB is the

set of relations or functions between elements in EB
that define their interconnections.

If necessary, both views can be extended with

new types and new relationships.
The μ- correspondence relation (μ) reflects the

agreement between the elements of the structural

and behavioral views of the model. In general,

𝜇 ⊆ 𝐸𝑆 × 𝐸𝐵, (4)

where: ES is set of all structural view elements

(instances of MS), а EB is the set of all elements of

the behavioral view (instances MB). The tuple

(s,b)∈μ means that the behavioral element b

corresponds to (or is bound to) the structural element

s.

For example: (C,A)∈μ can mean that activity
diagram A belongs to class C (the diagram models

the behavior associated with this class); (s, l)∈μ

indicates that lifeline l is an instance of class s (i.e.,

classRef(l)=s); (o, m)∈μ means that message m

models the call to operation o (formally,

m.name=o.name and opRef(m)=o). Thus, μ covers

all the necessary types of relationships between
structural and behavioral elements.

If we think of μ as a relation, we can say that

the following conditions are satisfied.

1. Identification linkage. In each pair (s, b) ∈ μ,

one element directly refers to the id of the other,

which provides unambiguous tracing between views.

2. Totality with respect to structure. Every
structural element that is marked as

hasBehavior=true and for which behavioral

granularity is possible has at least one

correspondence b∈EB.

3. Partiality in relation to behavior. Any

behavioral fragment must have a structural anchor.

Formally: ∀b∈EB, ∃s∈ES : (s,b)∈μ.

4. Non-functionality ES!→!EB and functionality

vice versa. One structural element can have several

behavioral correspondences, while each behavioral

Komleva N. O., Nikitchenko M. I. / Applied Aspects of Information Technology

 2025; Vol.8 No.2: 162–177

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer science and software engineering 169

element has a single structural anchor. Formally:

∀b∈EB, ∃!s∈ES : (s,b)∈μ.

To formally guarantee the consistency of the

model, we introduce a system of ontological

constraints on the relation µ. Here, ontology is a set

of object types, their properties, and relationships (in

the form of logical statements or OCL invariants)
that determines when a model is considered

consistent. In other words, it is a set of consistency

rules. Formally, these rules can be specified as

logical formulas (e.g., first-order) or as OCL
constraints that must be satisfied on any instance of

the model M.

Here are the key limitations of consistency.
Completeness of correspondences: For every

relevant structural element, there must be a

corresponding behavioral element. By "relevant" we
mean one that is explicitly marked with the

hasBehavior attribute= true (in this case, it is

considered dynamic). For other operations (e.g.,

getters/setters, DTO-class service methods, factory
constructors, etc.), behavioral support is not

mandatory, so a violation of the rule is not recorded

by the OCL invariant as follows:

context Class

inv BehaviorExists:

 self.operations->exists(op |

op.hasBehavior) implies

 (Interaction.allInstances()->exists(i |

 i.messages->exists(m | m.name =

op.name)) or

 StateMachine.allInstances()->exists(sm

|

 sm.transitions->exists(t |

t.trigger.operation = op)) or

 Activity.allInstances()->exists(act |

 act.actions->exists(a | a.operation

= op)))

This formulation creates a one-way

relationship: the behavioral view is based on the

structural view, but not vice versa. A class without
designated dynamic operations can remain purely

structural, which is consistent with the principle

“structure is primary, behavior is derived”.

This selective rather than total requirement has
two advantages. Firstly, it avoids false warnings for

“passive” classes, such as Enumeration, where

behavior is not required. Secondly, it allows you to
gradually develop the model: first, set the structure,

and then, as needed, specify the behavior without

breaking consistency. If a stricter rule is needed in
future projects (all operations must be covered by

test scenarios or animations), it can be formulated as

an extension of the current invariant, just change the

hasBehavior predicate to be inclusive.

Unity of compliance: Any behavioral element

has a single anchor at the structural view.

The OCL invariant is as follows:

context BehaviorElement

inv SingleAnchor:

 not self.anchor.oclIsUndefined()

Compatibility of types and parameters:

Object types and call signatures must match between

views.
The OCL invariant is as follows:

context Message

inv SignatureMatches:

 not self.opRef.oclIsUndefined() implies

 self.arguments->size() =

self.opRef.parameters->size() and

 self.arguments->forAll(arg |

 let idx : Integer = self.arguments-

>indexOf(arg) in

arg.type.conformsTo(self.opRef.parameters-

>at(idx).type))

No dangling references: No behavioral
fragment should refer to a structural element that

does not exist, and vice versa – a structural element

cannot have references to non-existent behavioral

fragments.
The OCL invariant is as follows:

context BehaviorElement

inv AnchorExists:

 StructuralElement.allInstances()

->includes(self.anchor)

context Class

inv ActivityReferenceValid:

 not self.activityRef.oclIsUndefined()

implies

 Activity.allInstances()

->exists(act | act.id = self.activityRef)

To formally guarantee consistency between the
structural and behavioral views of the model, the

following key invariants are defined:

BehaviorExists (invariant of completeness of
correspondences).

Guarantees that each dynamic structural-view

operation (hasBehavior attribute = true) has at least

one behavioral implementation.
Formally:

∀𝑠 ∈ 𝐸𝑆, 𝑠. hasBehavior = true ⇒

∃𝑏 ∈ 𝐸𝐵: (𝑠, 𝑏) ∈ μ.
 (5)

AnchorExists (invariant of no dangling
references).

Komleva N. O., Nikitchenko M. I. / Applied Aspects of Information Technology

 2025; Vol.8 No.2: 162–177

170

Computer science and software engineering ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Requires each behavioral element to have at

least one structural anchor.

Formally:

∀𝑏 ∈ 𝐸𝐵, ∃𝑠 ∈ 𝐸𝑆: (𝑠, 𝑏) ∈ μ. (6)

SingleAnchor (invariant of unity of

compliance).

Prohibits multiple bindings of one behavioral
element to several structural elements, requiring

only one anchor.

Formally:

∀𝑏 ∈ 𝐸𝐵, ∃! 𝑠 ∈ 𝐸𝑆: (𝑠, 𝑏) ∈ μ. (7)

SignatureMatches (signature matching

invariant).

Ensures that signatures match the definition of
operations at the structural view and their calls in

behavioral diagrams.

Formally:

∀𝑚 ∈ Message, 𝑚. opRef ≠ undefined ⇒

SignatureMatches(𝑚).
 (8)

These invariants are an integral part of the

formal model and are used to check consistency

when making changes to the model.
The metamodel and the correspondence relation

µ are implemented in such a way that all the above

constraints can be set declaratively. For this purpose,

OCL invariants were used to describe the

consistency rules and their subsequent formal

verification by means of Alloy. It is known that

Alloy is a language and tool for analyzing structures

based on the Boolean formulae feasibility problem

(SAT) [34], [35]. Each constraint is represented as

an Alloy-assertion, and the sets ES and EB are the

signatures of an Alloy model. The relation μ is

described through a binary relational attribute

between two signatures. For example, the rule

"Unity of compliance". In Alloy, it is expressed by a

quantifier formula on the set of model facts. If a

constraint is violated, Alloy finds a counterexample

– a specific set of objects s, b that does not meet the

requirement. This allows you to localize the

inconsistency. It should be noted that using the SAT

method requires limiting the search area (model

scopes), but in our case, the scopes correspond to the

actual number of elements in the model, which is

known and relatively small, which corresponds to

the practical performance limit of Alloy 4.2; for

models > 5000 elements, it is advisable to use a

sharding strategy or SAT accelerator. Thus, the

formal consistency rules have been transformed into

a form suitable for automatic verification by

SAT/Alloy. It is also worth noting that the current

translation covers a subset of OCL (without

collect/select on nested collections); operators

outside the subset are marked as not-supported and

require manual reformulation. For a detailed

overview of the syntax and expressive capabilities of

OCL, on which these rules are based, see [36].

For example, “Unity of compliance” can be

represented as follows:

-- declaration of basic signatures

sig StructuralElement {}

sig BehaviorElement {

 -- each behavioral element has exactly

ONE anchor structure

 anchor: one StructuralElement

}

This approach combines the clarity of the

specification at the UML metamodel level (via

OCL) with the rigor of the logical analysis offered

by Alloy (the SAT solver checks whether constraints

are met on all possible combinations of elements

within the specified limits).

Preserving the order and UML profile

extensions is planned in separate map-tables; in this

article, we limit ourselves to the basic elements of

the UML 2.5 specification.

A METHOD FOR CHECKING THE

CONSISTENCY OF MODELS WITH TWO VIEWS

The proposed method is based on a formal

UML metamodel with two views [1]. The method is

focused on incremental localized consistency

checking, which ensures guaranteed consistency of

the model during its gradual modification.

Let's define the stages of the method.

1. Change detection and model view

identification

A change is identified as being related to one of

the metamodel views, MS or MB. This is determined

based on the structure of the identifiers or the editing

context. According to the structure of the sets ES

(instances of MS) and EB (instances of MB),

determines which of the subsets has changed and

localizes the corresponding subgraph in the

correspondence graph μ⊂ES×EB.

2. Synchronization when changing the

structural view (JSON → XMI)

If a structural element is changed, the method

performs a direct check and synchronization of the

impact on the behavioral view.

Consider the subcases.

Komleva N. O., Nikitchenko M. I. / Applied Aspects of Information Technology

 2025; Vol.8 No.2: 162–177

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer science and software engineering 171

2.1. Adding a structural element

When adding the element s∈ES, the method
checks whether the rule of completeness of

correspondence is fulfilled:

∀𝑠 ∈ 𝐸𝑆, 𝑠. hasBehavior = true   ⟹

∃𝑏 ∈ 𝐸𝐵: (𝑠, 𝑏) ∈ μ.
 (9)

If there is no match, a new behavioral element b
is created that satisfies the requirement of existence

in the set EB. This guarantees the fulfillment of the

OCL invariant BehaviorExists.

2.2. Deleting a structural element

For each b that has a relationship (s,b)∈μ, a

relevance check is performed. If the dependency is

critical, the element b is removed, otherwise it is
marked as invalid. This supports the fulfillment of

the AnchorExists invariant.

2.3. Modification of a structural element
The method evaluates which properties of the

element s have been changed (e.g., type, name,

attributes) and performs a partial check of the
corresponding consistency constraints for the

associated b, such that (s,b)∈μ.

An example of type compatibility checking for

operation calls (8). Here, SignatureMatches(m)
means that:

 the number of arguments in the message m

is equal to the number of parameters of the
corresponding operation;

 the type of each argument corresponds to or

is compatible with the type of the corresponding

parameter of this operation.
This ensures that the SignatureMatches

invariant is respected for parameter types and calls.

3. Synchronization when changing the

behavioral view (XMI → JSON)

3.1. Adding a behavioral element

For each new b∈EB, the method sets the anchor

s∈ES in accordance with the requirements of the
SingleAnchor invariant, according to (7).

If there is no anchor, a proposal is generated to

create or bind the corresponding element at the
structural view.

3.2. Deleting a behavioral element

It checks whether there are any structural
elements that depend solely on the removed

behavioral element. The presence of such elements

may indicate the formation of invalid structural

fragments.

3.3. Modifying a behavioral element

A localized check of the compatibility of

parameters, types, and correspondences between
views is performed. In case of inconsistencies,

recommendations or suggestions for automatic

correction are generated.

4. Localized verification of OCL invariants

After synchronization operations, including
possible automatic corrections, the method checks

the consistency of the model by applying OCL

invariants. The check is not performed for the entire
model, but only for the set of Affected Elements –

elements that are directly or indirectly related to the

changed element through the correspondence
relation μ and other structural and behavioral

dependencies. This approach significantly reduces

the scope of verification and computational costs by

limiting the analysis to only relevant parts of the
model.

Each OCL invariant is local in nature and is

checked based on data about adjacent model
elements (for example, class invariants are checked

by their attributes and relationships, message

invariants are checked by related operations and

parameters). If all the invariants are met for the
elements of the Affected Elements set, the change is

considered accepted, and the model returns to the

consistent state. If at least one of the invariants is
violated, the algorithm records the conflict and

generates a corresponding message for the user.

5. Conflict handling and notifications
If any residual conflicts are detected, the system

immediately alerts the user in real time. The conflict

message contains a description of the problem (for

example, “The message calls an operation that does
not exist” or “The argument type does not match the

type of the operation parameter”) and suggests

possible steps to resolve it: “Create an operation
with this signature in the class”, “Change the

argument type to the correct one”, or “Delete the

duplicate class”. The user can choose one of the
proposed options, after which the system

automatically makes the appropriate changes to the

model. After that, the invariants are rechecked, and

if the conflict is resolved, the message disappears.
If automatic conflict resolution is not possible

(for example, when duplicated classes have

significant differences and it is impossible to
determine which one should be left), the system

records the problem and passes it on to the model

engineer for consideration.

The following notations are used in the
following: N is the total number of elements of the

UML model; k is the power of the set of changed

elements Δ in the current revision, with k≪N; d is
the maximum number of trace edges μ incident to

each element. The graph μ is stored in a two-way

Komleva N. O., Nikitchenko M. I. / Applied Aspects of Information Technology

 2025; Vol.8 No.2: 162–177

172

Computer science and software engineering ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

hash index, which provides access to adjacent

vertices in O(1).

The incremental algorithm performs for each

si∈Δ a recheck of only local invariants, and also
extends the result to the dependent behavioral

element bj, the number of which is limited to d.

Thus, the total number of elementary operations

does not exceed k⋅d, and if d is constant (sparse trace

graph), the asymptotic is O(k).

Theorem 1. Let Δ be the set of changed

elements of the UML model, ∣Δ∣=k, and d be the
upper bound on the degree of each vertex in the

trace graph μ. Then the running time of the

incremental consistency procedure satisfies the

estimate T(k)=O(k⋅d).

Proof. For each element si of the set Δ, no more

than d local invariant checks and one status

propagation operation to the corresponding bj are
performed. Since all auxiliary structures (indexes,

caches) provide O(1) access, the total complexity

does not exceed k⋅d; hence, T(k) = O(k⋅d).
It follows from the above that when k=1, the

amortized complexity of a single event approaches

O(1), while in general it grows linearly with the
number of changes. A full model check covering all

N elements requires O(N⋅d) steps and serves as a

baseline for comparison.

For a scenario where the entire UML model is
stored only in XMI format, localized incremental

verification covers one representation, and its time is

denoted as T1(k)=O(k·d). In the dual JSON and XMI
view, verification consists of three sequential

operations: (i) structural view validation, (ii)

behavioral view validation, and (iii) verification of

μ-relations between views. The first two operations
have the same upper bound of O(k·d), while the third

has O(k), since the μ relation is supported by a

bidirectional hash index with O(1) access.
Therefore, T2(k)=O(k·d+k) = O(k·d).

As a result, the presence of two formats does

not change the order of complexity compared to the
single-format XMI model; the difference is limited

to a constant multiplicative overhead that does not

affect the scalability of the method.

Conflict handling mechanisms. The method’s
policy is to automate the correction as much as

possible, but retain control over the model by the

user. If the detected conflict is unambiguously
resolvable according to the business logic (for

example, a duplicate record – you can delete one; a

renamed class – you should rename it in all

diagrams), the tool applies the fix itself and only
notifies you of it. In subtler cases, the user is given a

choice. For example, when two duplicate entities are

found, the system can offer to merge them, keep one

(and which one), or keep both, but then you need to

manually distinguish them (rename or clarify). The

system traces all changes, so the history of edits is
saved (you can cancel the automatic correction if it

turned out to be undesirable).

REFERENCE EXAMPLE

To verify the performance of the proposed

model and method, a simplified demonstration

example is considered. The scenario is a UML
model of the conditional subject area “Smart Home

– Device”, presented at two views in accordance

with the developed metamodel.

At the structural view, the model includes two
classes. The first of them is SmartHome, which

describes a smart home object with an address

attribute of type String, a collection of devices, and a
toggleAll() operation. The second class is Device,

which represents an individual device; it has the id

(string identifier) and status (boolean flag on/off)

attributes, as well as the toggleStatus() operation,
which is marked as dynamic (the hasBehavior

attribute is = true).

At the behavioral view, the model captures a
minimal set of dynamic scenarios, with all key

elements tied to structural identifiers. For the Device

class, a DeviceLifecycle state diagram was created
that models switching between the Idle and Active

states. For the SmartHome class, there is a ToggleAll

sequence diagram in which the SmartHome object

sends toggleStatus() messages to all devices. The
correspondence relation μ matches the identifiers of

the model elements: SmartHome has identifiers J1

(structural view) and X1 (behavioral view), Device
has J2 and X2, and the status attribute has J3 and X3.

In the initial state, the model is consistent: each

structural element has a single behavioral
counterpart, and all operation signatures are

consistent across views.

To simulate the real situation of model editing,

two typical out-of-synchronization typical of
complex systems are deliberately introduced. After

that, we demonstrate the application of the

developed method of incremental consistency
checking, which allows to automatically detect and

eliminate such violations.

Below is a sequence of steps that illustrates the

application of the methodology using a benchmark
example.

1. Change Δ1. The developer adds a new

dynamic operation checkBattery() to the Device

class: int, which receives the JcheckBattery

identifier. However, at the behavioral view, the

Komleva N. O., Nikitchenko M. I. / Applied Aspects of Information Technology

 2025; Vol.8 No.2: 162–177

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer science and software engineering 173

corresponding diagram or action that implements

this operation is not created. This leads to a violation

of the BehaviorExists invariant, which requires that

each dynamic operation has at least one mapping in
the behavioral model. The proposed method

automatically detects a change in a structural

element, identifies the absence of a corresponding
behavioral fragment through the correspondence

relation μ, and then initiates the auto-

synchronization process. A new action-call
checkBattery() is created in the DeviceLifecycle

state diagram, assigned the identifier

XcheckBattery, and a pair (JcheckBattery,

XcheckBattery) is added to the μ relationship. After
that, the BehaviorExists invariant is executed, and

the model returns to the consistent state.

2. Application of the method after Δ1. The
incremental mechanism detects the change of the

JcheckBattery element at the structural view,

analyzes the set of correspondences in the relation μ

and detects the absence of the corresponding
behavioral element. The method activates the

autosynchronization procedure and creates the

missing fragment in the behavioral view, which
ensures the fulfillment of the formal constraint

BehaviorExists. As a result, full correspondence

between structural and behavioral elements for the
added operation is achieved without involving

additional expertise.

3. Change Δ2. The project developer makes

changes to the ToggleAll behavior diagram and adds

the newState: Boolean parameter to the
toggleStatus() message. At the structural view, the

toggleStatus() operation description remains

parameterless, which violates the SignatureMatches
invariant, which requires full signature matching

between operation definitions and corresponding

messages in diagrams. As a result, there is a

discrepancy between the parameter sets that needs to
be eliminated.

4. Using the method after Δ2. The method

detects a change in the behavioral fragment Xmsg

that describes the toggleStatus() message. The
structural operation JtoggleStatus is found through

the correspondence relation μ, after which the

parameter lists are compared. If a discrepancy is
found, the method activates the correction

procedure: in the Device class, the newState:

Boolean parameter is added to the toggleStatus()

operation. After updating the signature, the

SignatureMatches invariant is executed again, and

the model returns to the consistent state.

Consistency control. After both scenarios are
completed, the model is re-validated to ensure that

all key invariants are met: BehaviorExists,

SignatureMatches, and SingleAnchor. Localized

verification reveals the absence of dangling links,

and all structural and behavioral elements have
correct correspondences in terms of μ. Analytical

evaluation confirms that, compared to a full O(N ⋅ d)

check for monolithic XMI, the incremental approach

reduces complexity to O(k ⋅ d), where k is the

number of changed elements, which allows for

effective consistency maintenance even in industrial-

scale models.

DISCUSSION OF THE RESULTS

The literature analysis and practical experience

of using UML in large teams show that the most
common consistency issues arise when different

types of diagrams are edited: renamed or omitted

methods, mismatched operation signatures, duplicate
elements in several packages, etc. Without automatic

control, such errors accumulate and become

noticeable only at the later stages of development

(code generation, integration testing), which
significantly increases the cost of corrections.

The proposed model with two views, combined

with formal consistency constraints, potentially
allows detecting such discrepancies at early stages of

modeling. It is assumed that incremental validation

will run in the background and provide the

developer with immediate feedback, minimizing the
impact on the workflow. The formal definition of

rules eliminates the risks of subjective interpretation

of the validation, ensuring the unambiguity of the
results. This increases the reliability of project

documentation – consistency is maintained

automatically and continuously, so the risk of
defects due to out-of-sync diagrams is significantly

reduced.

The scientific novelty of the work is that for the

first time a metamodel and method for ensuring the
consistency of UML descriptions in the two views

using JSON and XMI formats are formally defined.

Unlike previous attempts to implement similar
models, where synchronization between formats is

outlined only conceptually, this study proposes a

clear algorithmic verification mechanism that acts as
a "converter-controller" between two model views.

The theoretical analysis and case study confirmed

that such integration combines the advantages of

both formats, allowing the development team to use
convenient modeling tools without fear of losing

data accuracy or consistency. The previous UML

consistency rules (e.g., matching state diagrams with
class diagrams, checking the integrity of

requirements and design models, etc.) take on a new

Komleva N. O., Nikitchenko M. I. / Applied Aspects of Information Technology

 2025; Vol.8 No.2: 162–177

174

Computer science and software engineering ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

dimension in our metamodel – they can be applied in

the context of multiple description formats.

The limitation of this method is the need to

initially identify the corresponding elements
between the existing JSON and XMI descriptions.

Another direction of development is to expand the

set of consistency checks: for example, controlling
the consistency between the model and the code. It

is also planned to integrate the prototype system into

a development environment for further empirical
evaluation on industrial cases. In general, the results

of the study demonstrate the high efficiency of the

formal method for maintaining model consistency.

The proposed metamodel and method have
significant potential to improve the quality and

reliability of software projects without significantly

complicating development processes.
Further research involves empirically testing

these findings on real projects and quantifying the

performance of incremental validation.

CONCLUSIONS

The article presents a formal metamodel and

method for ensuring the consistency of a UML

model that is simultaneously stored in JSON and
XMI formats. A metamodel with two views, with a

clear correspondence relation between elements of

different views and a system of formal constraints
(OCL → Alloy) describing the necessary conditions

for their consistency is developed. Based on this

model, an incremental method of ensuring

consistency is proposed that automatically tracks
changes and synchronizes both views of the UML

model. The scientific novelty of the obtained results

lies in the combination of flexible JSON and strict
XMI through a single formalized mechanism, taking

into account the properties of OCL constraints and

the capabilities of SAT analysis, which allows

maintaining the integrity of the model in real time. It

is shown that the application of this approach allows

to use the strengths of each of the presented formats,
while, thanks to the method of ensuring consistency,

potential errors are detected at early stages and do

not accumulate, resulting in a reduction in the
complexity of corrections in the later phases of the

software life cycle and, in general, full consistency

between different views is achieved. The proposed
methodology extends the early work on the

described format [4] and lays the groundwork for the

practical use of JSON and XMI formats within the

same model without the risk of out-of-sync.
Quantitative evaluation confirmed that the transition

from full validation O(N⋅d) to incremental O(k⋅d)

reduces the complexity of consistency checking by

an order of magnitude for a typical ratio of k ≪ N.

The risk factors include the scalability of Alloy

analysis for models > 5000 elements, incomplete

coverage of OCL operators, and the need to integrate
the change log and 3-way-merge into the IDE; these

aspects will be the focus of future research.

The implementation of the validator

prototype is promising
In the next work, we plan to implement a

prototype validator in Python using the PyEcore

library and the Alloy SAT solver. It is expected to
support full and incremental verification modes,

integration with popular IDEs and collection of

static performance statistics. The scalability of the
Alloy solver and full integration with the IDE API

remain critical success factors, which will be the

subject of further work. Experimental evaluation on
real projects should confirm the effectiveness and

scalability of the proposed solution.

REFERENCES

1. Fowler, M. “UML Distilled: A Brief Guide to the standard object modeling language”. Boston: USA;

Pearson Education Limited. 2018.

2. Chonoles, M. J. “OCUP 2 Certification Guide: Preparing for the OMG Certified UML 2.5

Professional Foundation Exam”. 1-st ed. Amsterdam – Boston: Morgan Kaufmann (Elsevier). 2018. ISBN

978-0-12-809640-6.

3. “Object Management Group (OMG). XML Metadata Interchange (XMI) Version 2.5.1

Specification”. 2015. ‒ Available from: https://www.omg.org/spec/XMI/2.5.1. [Accessed: June 2025].

4. Nikitchenko, M. I. “Two-Tier UML Architecture Based on Hybrid JSON and XMI Format”.

Scientific Notes of Taurida National V. I. Vernadsky University, Series: Technical Sciences. 2025; 2 (1):

157–162. DOI: https://doi.org/10.32782/2663-5941/2025.1.2/23.

5. Tang, G., Jiang, J. & Wen, H. “Consistency analysis of UML models”. In: Proceedings of the 29th

International Conference on Distributed Multimedia Systems. 2023.

DOI: https://doi.org/10.18293/dmsviva2023-187.

6. Clarisó, R., González, C. A. & Cabot, J. “Incremental Verification of UML/OCL Models”. Journal of

Object Technology. 2020; 19 (3): 3:1. DOI: https://doi.org/10.5381/jot.2020.19.3.a7.

Komleva N. O., Nikitchenko M. I. / Applied Aspects of Information Technology

 2025; Vol.8 No.2: 162–177

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer science and software engineering 175

7. Tröls, M. A., Marchezan, L., Mashkoor, A. & Egyed, A. “Instant and Global consistency checking

during collaborative engineering”. Software and Systems Modeling. 2022; 21 (6): 2489–2515.

DOI: https://doi.org/10.1007/s10270-022-00984-4.

8. Brambilla, M., Cabot, J. & Wimmer, M. “Model-driven software engineering in practice”. Cham:

Switzerland; Springer. 2017. p. 123–140. DOI: https://doi.org/10.1007/978-3-031-02549-5_8.

9. Bashir, R. S., Lee, S. P., Khan, S. U. R., Chang, V. & Farid, S. “UML Models Consistency

Management: Guidelines for Software Quality Manager”. International Journal of Information Management.

2016; 36 (6): 883–899, https://www.scopus.com/record/display.uri?eid=2-s2.0-84975132479&

origin=resultslist. DOI: https://doi.org/10.1016/j.ijinfomgt.2016.05.024.

10. Jongeling, R., Ciccozzi, F., Carlson, J. & Cicchetti, A. “Consistency management in industrial

continuous model-based development settings: A reality check”. Software and Systems Modeling. 2022; 21

(6): 1511–1530, https://www.scopus.com/record/display.uri?eid=2-s2.0-85128275171&origin=resultslist.

DOI: https://doi.org/10.1007/s10270-022-01000-5.

11. Torre, D., Labiche, Y., Genero, M. & Elaasar, M. “A systematic identification of consistency rules

for UML diagrams”. Journal of Systems and Software. 2018; 144: 121–142.

DOI: https://doi.org/10.1016/j.jss.2018.06.029.

12. Torre, D., Labiche, Y., Genero, M. & Elaasar, M. “How consistency is handled in model-driven

software engineering and UML: An Expert-Opinion Survey”. Software Quality Journal. 2023; 31 (1): 1–54.

DOI: https://doi.org/10.1007/s11219-022-09585-2.

13. Torre, D., Labiche, Y., Genero, M. & others. “UML Consistency Rules: A Case Study with

Open-Source UML Models”. In: Proceedings of the 18th International Conference on Software Engineering

and Formal Methods (SEFM 2020). 2020. p. 130–140. DOI: https://doi.org/10.1007/978-3-030-58768-0_8.

14. Muram, F. U., Tran, H. & Zdun, U. “Systematic review of software behavioral model consistency

checking”. ACM Computing Surveys. 2017; 50 (2): 1–39. DOI: https://doi.org/10.1145/3037755.

15. Kungurtsev, O. & Novikova, N. “Identification of class models imperfection”. Herald of Advanced

Information Technology. 2020; 3 (2): 13–22. DOI: https://doi.org/10.15276/hait.02.2020.1.

16. Cicchetti, A., Ciccozzi, F. & Pierantonio, A. “Multi-view approaches for software and system

modelling: A Systematic Literature Review”. Software and Systems Modeling. 2019; 18 (6): 3207–3233,

https://www.scopus.com/record/display.uri?eid=2-s2.0-85061733132&origin=resultslist.

DOI: https://doi.org/10.1007/s10270-018-00713-w.

17. Klare, H., Kramer, M., Langhammer, M., Burger, E. & Reussner, R. “Enabling Consistency in

View-Based System Development: The Vitruvius Approach”. Journal of Systems and Software. 2021;

171: 110827, https://www.scopus.com/record/display.uri?eid=2-s2.0-85092430945&origin=resultslist.

DOI: https://doi.org/10.1016/j.jss.2020.110815.

18. Daniel, G., Sunyé, G., Tisi, M., Madiot, F. & Cabot, J. “NeoEMF: A Multi-Database Model

Persistence Framework for Very Large Models”. Science of Computer Programming. 2018; 149: 26–52.

DOI: https://doi.org/10.1016/j.scico.2017.08.002.

19. Sharbaf, M., Zamani, B., Sunyé, G. & Barbier, F. “Conflict Management Techniques for Model

Merging: A Systematic Mapping Review”. Software and Systems Modeling. 2022; 21 (6): 2687–2713,

https://www.scopus.com/record/display.uri?eid=2-s2.0-85140063127&origin=resultslist.

DOI: https://doi.org/10.1007/s10270-022-01050-9.

20. Sharbaf, M., Zamani, B., Sunyé, G. & Barbier, F. “Automatic Resolution of Model Merging

Conflicts Using Quality-Based Reinforcement Learning”. Journal of Computer Languages. 2022; 71:

101123. DOI: https://doi.org/10.1016/j.cola.2022.101123.

21. Meghzili, S., Chaoui, A., Strecker, M. & Kerkouche, E. “On the Verification of UML

State-Machine Diagrams to Colored Petri Nets Transformation Using Isabelle/HOL”. In: Proceedings of the

2017 IEEE International Conference on Information Reuse and Integration (IRI). 2017. p. 419–426.

DOI: https://doi.org/10.1109/iri.2017.63.

22. Noulamo, T., Tanyi, E., Nkenlifack, M., Lienou, J.-P. & Djimeli Tsajio, A. B. “Formalization

Method of the UML Statechart by Transformation toward Petri Nets”. IAENG International Journal of

Computer Science. 2018; 45: 505–513.

Komleva N. O., Nikitchenko M. I. / Applied Aspects of Information Technology

 2025; Vol.8 No.2: 162–177

176

Computer science and software engineering ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

23. Paulin, O., Komleva, N., Marulin, S. & Nikolenko, A. “Method for Constructing the Model of

Computing Process Based on Petri Net”. Applied Aspects of Information Technology. 2019; 2 (4): 260–270.

DOI: https://doi.org/10.15276/aait.04.2019.1.

24. Rajabi, B. A. & Lee, S. P. “Coevolution patterns to detect and manage UML diagrams changes”.

International Journal of Computing. 2019; 18 (4): 471–482,

https://www.scopus.com/record/display.uri?eid=2-s2.0-85085195001&origin=resultslist.

DOI: https://doi.org/10.47839/ijc.18.4.1617.

25. Oriol, X. & Teniente, E. “Incremental Checking of OCL Constraints with Aggregates Through

SQL”. In: Proceedings of the 34th International Conference on Conceptual Modeling (ER 2015). 2015;

9381: 199–213, https://www.scopus.com/record/display.uri?eid=2-s2.0-84951803713&origin=resultslist.

DOI: https://doi.org/10.1007/978-3-319-25264-3_15.

26. Lu, S., Tazin, A., Chen, Y., Kokar, M. & Smith, J. “Ontology-Based Detection of Inconsistencies in

UML/OCL Models”. In: Proceedings of the 10th International Conference on Model-Driven Engineering

and Software Development MODELSWARD. 2022. p. 194–202,

https://www.scopus.com/record/display.uri?eid=2-s2.0-85146603066&origin=resultslist.

DOI: https://doi.org/10.5220/0010814500003264.

27. Wen, H., Wu, J., Jiang, J., Tang, G. & Hong, Z. “A Formal Approach for Consistency Management

in UML Models”. International Journal of Software Engineering and Knowledge Engineering. 2023; 33 (5):

733–763, https://www.scopus.com/record/display.uri?eid=2-s2.0-85153971381&origin=resultslist.

DOI: https://doi.org/10.1142/S0218194023500134.

28. Leblebici, E., Anjorin, A. & Schürr, A. “Inter-Model Consistency Checking Using Triple Graph

Grammars and Linear Optimization Techniques”. In: Proceedings of the 20th International Conference on

Fundamental Approaches to Software Engineering (FASE 2017). 2017; 10202: 191–207,

https://www.scopus.com/record/display.uri?eid=2-s2.0-85016392599&origin=resultslist.

DOI: https://doi.org/10.1007/978-3-662-54494-5_11.

29. Nikitenko, M. I. “Analysis of formats for storing UML models in modern CASE tools”. In:

Proceedings of the IV International Scientific Conference “Technology and Society: Interaction, Influ-ence,

Transformation.”. 2025; p. 208–212. DOI: https://doi.org/10.62731/mcnd-20.06.2025.

30. Stünkel, P., König, H., Lamo, Y. & Rutle, A. “Comprehensive Systems: A Formal Foundation for

Multi-Model Consistency Management”. Formal Aspects of Computing. 2021; 33 (6): 1067–1114.

DOI: https://doi.org/10.1007/s00165-021-00555-2.

31. Overbeek J.F. “Meta Object Facility (MOF): Investigation of the State of the Art”. Master’s thesis.

Enschede: University of Twente; 2006. 92 p. – Available from: https://essay.utwente.nl/57286.

32. Kruchten P. “Architectural Blueprints – The ‘4 + 1’ View Model of Software Architecture”. IEEE

Software. 1995; 12(6): p. 42–50. DOI: https://doi.org/10.1109/52.469758.

33. Lu, L. & Kim, D.-K. “Required Behavior of Sequence Diagrams”. ACM Transactions on Software

Engineering and Methodology. 2014; 23 (2): 1–28. DOI: https://doi.org/10.1145/2523108.

34. Jackson, D. “Alloy: A Language and Tool for Exploring Software Designs”. Communications of the

ACM. 2019; 62 (9): 66–76. DOI: https://doi.org/10.1145/3338843.

35. Bagheri, H. & Malek, S. “Titanium: Efficient Analysis of Evolving Alloy Specifications”. In:

Proceedings of the 24th ACM SIGSOFT International Symposium on the Foundations of Software

Engineering (FSE 2016). Seattle, USA. 2016. DOI: https://doi.org/10.1145/2950290.2950337.

36. Cabot, J. & Gogolla, M. “Object Constraint Language (OCL): A Definitive Guide”. In: Formal

Methods for Model-Driven Engineering. Berlin: Germany; Springer. 2012. p. 58–90.

DOI: https://doi.org/10.1007/978-3-642-30982-3_3.

Conflicts of Interest: The authors declare that they have no conflict of interest regarding this study, including financial, personal, authorship or other,

which could influence the research and its results presented in this article

Received 08.04.2025

Received after revision 12.06.2025

Accepted 18.06.2025

https://doi.org/10.15276/aait.04.2019.1

Komleva N. O., Nikitchenko M. I. / Applied Aspects of Information Technology

 2025; Vol.8 No.2: 162–177

ISSN 2617-4316 (Print)

ISSN 2663-7723 (Online)

Computer science and software engineering 177

DOI: https://doi.org/10.15276/aait.08.2025.11

УДК: 004.421.2:004.415.5

Метод інкрементального контролю консистентності між

структурним і поведінковим поданням програмної архітектури

Комлева Наталія Олегівна
1)

ORCID: https://orcid.org/http://orcid.org/0000-0001-9627-8530; komleva@op.edu.ua. Scopus Author ID: 57191858904

Нікітченко Максим Ігорович
1)

ORCID: https://orcid.org/0009-0007-9560-7057; maksym.nikitchenko@gmail.com
1) Національний університет “Одеська політехніка”, пр. Шевченка, 1. Одеса, 65044, Україна

АНОТАЦІЯ

Розвиток програмної інженерії ставить перед дослідниками завдання підтримувати цілісність моделей, що

зберігаються одночасно у легкому текстовому та у формально насиченому метаданому поданні. Наявність двох
представлень забезпечує широку сумісність з інструментами розробників і точне відтворення семантики, проте породжує
ризик розбіжностей між структурним і поведінковим описами. Актуальність дослідження визначається потребою в методах,
які унеможливлюють накопичення суперечностей без суттєвого впливу на швидкість ітерацій проектування. Метою роботи
є теоретичне обґрунтування інкрементального підходу, здатного гарантувати узгодженість метамоделі з двома поданнями
під час будь-яких послідовних змін. Для досягнення цієї мети сформовано узагальнену метамодель, що виокремлює
структурне подання для статичних сутностей і поведінкове подання для динамічних аспектів. Між поданнями запроваджено
відношення відповідності, яке описує пари еквівалентних елементів і задає правила їх взаємної узгодженості. Сукупність
правил формалізовано мовою об’єктних інваріантів. Інкрементальність забезпечена локалізацією змін: після редагування

перевіряються лише ті фрагменти, що безпосередньо залучені до модифікації, завдяки чому часові витрати залишаються
пропорційними обсягу оновленої частини. Наслідком застосування методу є доведення коректності запропонованих
обмежень, яке виключає можливість виникнення несумісних станів моделі. Аналітична оцінка складності процедури
підтверджує лінійну залежність від кількості змінених елементів, що свідчить про придатність підходу для промислових
розмірів моделей. Демонстраційний контрольний приклад, побудований на репрезентативному домені, засвідчив, що метод
виявляє інконсистентність одразу після одиночної правки та пропонує послідовність дій, достатню для її усунення без
залучення сторонньої експертизи. У підсумку робота пропонує нову формальну методику підтримки узгодженості між
поданнями однієї моделі, яка комплексно поєднує локалізовану перевірку з декларативним описом залежностей. Практична

значущість проявляється у зменшенні витрат на виправлення помилок, підвищенні надійності документації та можливості
інтегрувати метод у сучасні середовища моделювання і безперервної розробки, що робить його перспективним
інструментом при розробці та супроводу великих корпоративних систем..

Ключові слова: Узгодженість моделей; інкрементальна перевірка; синхронізація моделей; метамодель; онто-логічні
обмеження, надійність

ABOUT THE AUTHORS

Nataliia O. Komleva ‒ Candidate of Engineering Sciences, Associate Professor, Head of Software Engineering

Department. Odesa Polytechnic National University, 1, Shevchenko Ave. Odesa, 65044, Ukraine

ORCID: http://orcid.org/0000-0001-9627-8530; komleva@op.edu.ua. Scopus Author ID: 57191858904

Research field: Data analysis; software engineering; knowledge management

Комлева Наталія Олегівна ‒ кандидат технічних наук, завідувач кафедри Інженерії програмного

забезпечення, Національний університет «Одеська політехніка», пр. Шевченка, 1. Одеса, 65044, Україна

Maksym I. Nikitchenko ‒ graduate student, Software Engineering Department. Odesa Polytechnic National

University. 1, Shevchenko Ave. Odesa, 65044, Ukraine

ORCID: https://orcid.org/0009-0007-9560-7057; maksym.nikitchenko@gmail.com

Research field: Software Engineering

Нікітченко Максим Ігорович ‒ аспірант кафедри Інженерії програмного забезпечення. Національний

університет “Одеська політехніка”, пр. Шевченка, 1. Одеса, 65044, Україна

https://doi.org/10.15276/aait

