Методи уточнення карти глибин, отриманої з датчиків глибини

Main Article Content

Sergey B. Kondratyev
Svitlana G. Antoshchuk
Mykola A. Hodovychenko

Анотація

Карти глибини мають важливе значення для таких застосувань, як робототехніка, доповнена реальність, автономні транспортні засоби та медична візуалізація, надаючи критично важливу просторову інформацію. Однак карти глибини, отримані за допомогою таких датчиків, як датчики часу польоту (ToF) і системи структурованого світла, часто страждають від низької роздільної здатності, шуму і пропущених даних. Для вирішення цих проблем у цьому дослідженні представлено інноваційний метод уточнення карт глибини шляхом інтеграції кольорових зображень високої роздільної здатності. Запропонований підхід використовує як жорсткі, так і м'які стратегії розподілу пікселів для адаптивного покращення якості карти глибини. Модель з жорстким рішенням спрощує класифікацію країв, тоді як модель з м'яким рішенням, інтегрована в рамках теорії випадкових полів Маркова, покращує узгодженість країв і зменшує шум. Аналізуючи розбіжності між краями на картах глибини та кольорових зображеннях, метод ефективно усуває такі артефакти, як копіювання текстури та розмиті краї, забезпечуючи краще узгодження між наборами даних. Ключові інновації включають використання оператора виявлення країв Кенні для виявлення і класифікації невідповідностей країв та обчислення анізотропної спорідненості для точного структурного представлення. Модель з м'яким прийняттям рішень впроваджує передові методи зменшення шуму, покращуючи роздільну здатність карти глибини і зберігаючи деталі країв краще, ніж традиційні методи. Експериментальна перевірка на еталонних наборах даних Middlebury демонструє, що запропонований метод перевершує існуючі методи у зменшенні значень середньої абсолютної різниці, особливо у сценаріях з високим масштабуванням. Візуальне порівняння підкреслює його здатність придушувати артефакти і підвищувати різкість країв, що підтверджує його ефективність у різних умовах. Цей підхід має значний потенціал для застосувань, що потребують високоякісних карт глибини, включаючи робототехніку, доповнену реальність, автономні системи та медичну візуалізацію. Усуваючи критичні обмеження існуючих методів, дослідження пропонує надійне, універсальне рішення для уточнення карт глибини з можливостями оптимізації в реальному часі в динамічних середовищах.

Downloads

Download data is not yet available.

Article Details

Тематика

Розділ

Інженерія програмного забезпечення та системний аналіз

Автори

Біографії авторів

Sergey B. Kondratyev, Національний університет «Одеська Політехніка», пр. Шевченка, 1. Одеса, 65044,Україна

ст. викладач кафедри Штучного інтелекту та аналізу даних

Svitlana G. Antoshchuk, Національний університет «Одеська політехніка», пр. Шевченка, 1, Одеса, 65044, Україна

доктор технічних наук, професор кафедри Інформаційних систем. Національний університет «Одеська політехніка», пр. Шевченка, 1, Одеса, 65044, Україна

Scopus Author ID: 8393582500

Mykola A. Hodovychenko, Національний університет «Одеська Політехніка», пр. Шевченка, 1. Одеса, 65044,Україна

кандидат технічних наук, доцент Інституту комп’ютерних систем, кафедри Штучного інтелекту та аналізу даних

Scopus Author ID: 57188700773

Статті цього автора (цих авторів), які найбільше читають

Схожі статті

Ви також можете розпочати розширений пошук схожих статей для цієї статті.