Дискретна апроксимація неперервних динамічних об‘єктів в середовищі пакету MATLAB
Main Article Content
Анотація
Дана робота присвячена дослідженню різних методів дискретної апроксимації неперервних ланок, що є обов‘язковим етапом синтезу цифрових систем керування неперервними динамічними об‘єктами та розробці методичних рекомендацій щодо виконання цих операцій за допомогою інструментів системи програмування MATLAB. В роботі досліджені такі методи дискретизації як імпульсно-, ступінчасто- та лінійно інваріантні Z-перетворення, підстановчі методи основані на застосуванні різних методів числового інтегрування та метод відповідності нулів-полюсів. У роботі наведено приклади використання для здійснення цих операцій числових та символьних інструментів пакету MATLAB, запропоновано удосконалений варіант m-функції для дискретизації неперервних систем методом відповідності нулів полюсів, що дозволяє даному методу ближуватися як до ступінчасто-інваріантного, так і до лінійно-інваріантного Z-перетворень; розроблено програми для дискретної апроксимації неперервних об‘єктів у символьному вигляді, що дозволяє виконувати порівняльний аналіз методів дискретизації і синтезованих за їх допомогою систем та досліджувати вплив періоду квантування на точність дискретизації аналітичними методами. Виконано порівняння між собою дискретних передавальних функцій, отриманих різними методами, та відповідних реакцій у часі на різні сигнали. За допомогою розроблених програм визначено, що імпульсно-інваріантне Z-перетворення можна використовувати тільки у тому випадку, коли на вхід неперервного об‘єкту надходять імпульсні сигнали, а лінійно-інваріантне перетворення доцільно використовувати при стрибкоподібних сигналах на вході. Також в роботі наведено алгоритм застосування методу Тастіна, що відповідає заміні аналогового інтегрування чисельним інтегруванням методом трапецій. Показано, що метод Тастіна є найбільш придатним для дискретизації регуляторів першого порядку з обмеженням вихідного сигналу. В статті також розглянуто метод відповідності нулів-полюсів та показано, що він має найбільшу точність серед приблизних методів дискретної апроксимації. На основі виконаних досліджень наведено рекомендації щодо використання цих методів при синтезі систем керування неперервними динамічними об‘єктами.